Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T16:56:18.778Z Has data issue: false hasContentIssue false

Bioinspired Inorganic/polymer Thin Films

Published online by Cambridge University Press:  31 January 2011

Gustavo A. Hirata
Affiliation:
[email protected], CNYN-UNAM, Fisicoquimica de Nanomateriales, Km. 107 Carretera Tij-Ens, Ensenada, BAJA CALIFORNIA, 22860, Mexico, +52-646-174-4604, +52-646-174-4603
Sandra Payan Diaz
Affiliation:
[email protected], CNYN-UNAM, Fisicoquimica de Nanomateriales, Ensenada, Mexico
Po-Yu Chen
Affiliation:
[email protected], University of California, San Diego, Materials Science and Engineering Program, La Jolla, California, United States
Marc A. Meyers
Affiliation:
[email protected], University of California, San Diego, Mechanical and Aerospace Engineering, La Jolla, California, United States
Joanna McKittrick
Affiliation:
[email protected], University of California, San Diego, Mechanical and Aerospace, 9500 Gilman Dr., La Jolla, California, 92093-0411, United States
Get access

Abstract

Studies of hard biological materials such as marine shells, animal teeth, horns and bones have produced fascinating ideas for mimicking their micro/nanostructure in the lab. The nacre in the abalone shell has a well-defined organic/inorganic structure that has a fracture resistance that is much higher than the individual constituents. By using biocompatible materials we have fabricated zirconium nitride/ polymethylmethacrylate alternating layers that are based on the structure of nacre. A combination of DC-magnetron sputtering and pulsed laser deposition on (100) silicon substrates was used to fabricate multilayers in a single chamber without breaking the vacuum. The ZrN films showed nanocrystalline columnar growth on the silicon substrates or on the PMMA nanolayer. High resolution SEM analysis at the inorganic/organic interface revealed well formed, uniform thickness inorganic films which are separated by the polymeric layer (30-90 nm). The ratio of the ceramic/polymer is the same as in nacre. Nanoindentation hardness values of ˜ 20GPa were measured on both the ZrN single film, similar to published values, and the ZrN/PMMA composite layers and the elastic modulus remained constant, independent of the number of layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Munch, E. Launey, M.E. Alsem, D.H. Saiz, E. Tomsia, A A.P. and Ritchie, R.O. Science, 322 1516 (2008).Google Scholar
2 Fratlz, P. Gupta, H.S. Paschalis, E.P. and Roschger, P. J. Mat. Chem., 14 2115 (2004).Google Scholar
3 Deville, S. et al. , Science, 311, 515 (2006).Google Scholar
4 Tang, Z. Kotov, N.A. Magonov, S. and Ozturk, B. Nature Mater., 2, 413 (2003).Google Scholar
5 Jackson, A.P. J.Vincent, F.V. and Turner, R.M. Proc R Sot Lond B, 234 415440 (1988).Google Scholar
6 Mayer, G. Science, 310, 11441147 (2005).Google Scholar
7 Zhao, S. Zhang, J. Zhao, S. Li, W. and Li, H. Comp. Sci. Tech., 63 10091014 (2003).Google Scholar
8 Burghard, Z. Tucic, A. Jeurgens, L.P.H. Hoffman, R.C. Bill, J. and Aldinger, F. Adv. Mater., 19, 970 (2007).Google Scholar
9 Losekrug, B. Meschede, A. and Krebs, H.U. Appl. Surf. Sci., 254, 1312 (2007).Google Scholar
10 Bhushan, B. and Li, X. Int. Mater. Rev., 48, 125 (2003).Google Scholar
11 Musil, J. Kunc, F., Zeman, H. and Polakova, H. Surf. Coat. Technol., 154, 304 (2002).Google Scholar
12 Wei, Z. Zhang, G. Chen, H. Luo, J. Liu, R. and Guo, S. J. Mater. Res., 24, 801 (2009).Google Scholar
13 Sproul, W.D. Thin Solid Films, 107, 141147 (1983).Google Scholar
14 Oliver, W.C. and Pharr, G.M. J. Mater. Res., 7, 1564 (1992).Google Scholar