Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T09:16:55.459Z Has data issue: false hasContentIssue false

Binormal Nanohelices

Published online by Cambridge University Press:  26 February 2011

Alexandre F. da Fonseca
Affiliation:
[email protected], University of Sao Paulo, Mathematical Physics
Douglas S. Galvao
Affiliation:
[email protected], State University of Campinas, Applied Physics, Brazil
Coraci P. Malta
Affiliation:
[email protected], University of Sao Paulo, Mathematical Physics, Brazil
Get access

Abstract

Helical structures can be classified in accordance with the orientation of its cross-section with respect to the normal or binormal vectors. We investigate the geometric features of several nanosprings verifying the non-existence of normal nanohelices. In this work, using the VLS growth model, we explain not only the absence of normal nanosprings but also the growing process of binormal nanosprings. The dynamical stability of crystalline ZnO binormal nanohelices is also addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Iijima, S., Nature (London) 354, 56 (1991).Google Scholar
[2] Baughman, R. H., Zakhidov, A. A., and de Heer, W. A., Science 297, 787 (2002).Google Scholar
[3] McIlroy, D. N., Alkhateeb, A., Zhang, D., Aston, D. E., Marcy, A. C. and Norton, M. G., J.Phys.: Condens. Matter 16, R415 (2004).Google Scholar
[4] Korgel, B. A., Science 309, 1693 (2005).Google Scholar
[5] Wagner, R. S. and Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964).Google Scholar
[6] Amelinckx, S., Zhang, X. B., Bernaertsm, D. Zhang, X. F., Ivanov, V., and Nagy, J. B., Science 265, 635 (1994).Google Scholar
[7] McIlroy, D. N., Zhang, D., Kranov, Y., and Norton, M.G., Appl. Phys. Lett. 79, 1540 (2001).Google Scholar
[8] Zhang, H. F., Wang, C.M., Buck, E. C., and Wang, L. S., Nano Lett. 3, 577 (2003).Google Scholar
[9] Zhang, D., Alkhateeb, A., Han, H., Mahmood, H., McIlroy, D. N., and Norton, M.G., Nano Lett. 3, 983 (2003).Google Scholar
[10] Kong, X. Y. and Wang, Z. L., Nano Lett. 3 1625 (2003).Google Scholar
[11] Fonseca, A. F. da and Galvao, D. S., Phys. Rev. Lett. 92, 175502 (2004).Google Scholar
[12] Goriely, A. and Shipman, P., Phys. Rev. E 61, 4508 (2000).Google Scholar
[13] Lectures on Classical Differential Geometry, Struik, D. J., 2nd Edition, Ed.; Addison-Wesley: Cambridge, 1961.Google Scholar
[14] Gao, P. X., Ding, Y., Mai, W., Hughes, W. L., Lao, C. and Wang, Z. L., Science 309, 1700 (2005).Google Scholar