Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T08:28:13.890Z Has data issue: false hasContentIssue false

Bimetallic PdCu Nanoparticle Catalyst Supported on Hydrotalcite for Selective Aerobic Oxidation of Benzyl Alcohol

Published online by Cambridge University Press:  12 February 2015

Shun Nishimura
Affiliation:
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
Nao Yoshida
Affiliation:
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
Kohki Ebitani*
Affiliation:
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
Get access

Abstract

To decrease the amount of precious metal usage for Pd-catalyzed aerobic alcohol oxidation, various amount of Cu-contained Pd bimetallic nanoparticle-supported solid base hydrotalcite catalyst (PdxCuy-PVP/HTs) were prepared and applied for aerobic benzyl alcohol oxidation. It was found that the addition of Cu atoms into Pd in the range of 0-40% provided a similar or a little superior activity to that of Pd100-PVP catalyst, whereas a large quantity of co-existence Cu (>40%) gradually decreased their activity of the catalyst. The aerobic benzyl alcohol oxidation over Pd80Cu20-PVP/HT served 77% yield and 95% selectivity towards benzaldehyde at 313 K for 5 h in toluene under O2 flow. X-ray adsorption spectroscopy (XAS) studies and scanning transmission electron microscopy-high angle annuar dark field (STEM-HAADF) with energy dispersive X-ray spectroscopy (EDS) analyses suggested that Cu atoms doping into Pd(0) NP influenced not only localized nanostructure but also oxidation state around Pd atoms. We suggested that substitution of precious metal with small amount of transition metals such as Cu lead to geometric/electronic changes in active sites would be one of nice strategies for reducing the cost for the catalyst in the oxidation process.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dijksman, A., Marino-Gozalez, A., I Payeras, A. M., Arends, I. W. C. E. and Sheldon, R. A., J. Am. Chem. Soc. 123, 6826 (2001).CrossRefGoogle Scholar
Balaraman, E., khaskin, E., Leitus, G. and Milstein, D., Nature Chem. 5, 122 (2013).CrossRefGoogle Scholar
Mallat, T. and Baiker, A., Chem. Rev. 104, 3037 (2004) (review).CrossRefGoogle Scholar
Davis, S. E., Ide, M. S. and Davis, R. J., Green Chem. 15, 17 (2013) (review)CrossRefGoogle Scholar
Lee, A. F., “Mechanistic Studies of Alcohol Selective Oxidation”, Heterogeneous Catalysts for Clean Technology: Spectroscopy, Design, and Monitoring, ed. Wilson, K. and Lee, A. F. (Wiley 2013) pp. 1138.CrossRefGoogle Scholar
Toshima, N. and Wang, Y., Langmuir 10, 4574 (1994).CrossRefGoogle Scholar
Sengupta, D., Saha, J., De, G. and Basu, B., J. Mater. Chem. A 2, 3986 (2014).CrossRefGoogle Scholar
Guy, K. A., Xu, H., Yang, J. C., Werth, C. J. and Shapley, J. R., J. Phys. Chem. C 113, 8177 (2009).CrossRefGoogle Scholar
Mazumder, V., Chi, M., Mankin, M. N., Liu, Y., Metin, O., Sun, D., More, K. L., Sun, S., Nano Lett. 12, 1102 (2012).CrossRefGoogle Scholar
Liang, D., Gao, J., Wang, J. H., chen, P., Wei, Y. F., Hou, Z. Y., Catal. Commun. 12, 1059 (2011).CrossRefGoogle Scholar
Pina, C. D., Falletta, E. and Rossi, M., J. Catal. 260, 384 (2008).CrossRefGoogle Scholar
Jia, Q. Q., Zhao, D. F., Tang, B., Zhao, N., Li, H. D., Sang, Y. H., Bao, N., Zhang, X. M., Xu, X. H., Liu, H., J. Mater. Chem. A 2, 38 (2014).Google Scholar
Nishimura, S., Yakita, Y., Katayama, M., Higashimine, K. and Ebitani, K., Catal. Sci. Technol. 3, 351 (2013).CrossRefGoogle Scholar
Bradley, J. S., Hill, E. W., Behal, S. and Klein, C., Chem. Mater. 4, 1234 (1992).CrossRefGoogle Scholar
Takehira, S., Tsukamoto, T., Matsune, H., and Kishida, M., Catal. Sci. Technol. 3, 2723 (2013).Google Scholar
Menezes, W. G., Altmann, L., Zielasek, V., Thiel, K., Baumer, M., J. Catal. 300, 125 (2013).CrossRefGoogle Scholar