Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T08:43:59.671Z Has data issue: false hasContentIssue false

Beam Processing of Silicon With a Scanning CW Hg Lamp

Published online by Cambridge University Press:  15 February 2011

Tim Stultz
Affiliation:
Stanford Electronics Laboratory, Stanford, CA 94305
Jim Sturm
Affiliation:
Stanford Electronics Laboratory, Stanford, CA 94305
James Gibbons
Affiliation:
Stanford Electronics Laboratory, Stanford, CA 94305
Get access

Abstract

A scanning arc lamp annealing system has been built using a 3” long mercury arc lamp with an elliptical reflector. The reflector focuses the light into a high intensity narrow line source. Silicon wafers implanted with 100 Kev 75As+ to 1×l015 cm−2 have been uniformly annealed with a single scan, resulting in complete activation and negligible redistribution of the implanted species. Using a scan rate of 1cm/s, entire 3” wafers have been annealed in less than 10 seconds with this system. The system has also been used to recrystallize thin films of polysilicon deposited on thermally grown silicon dioxide. The recrystallized films contain grains that are typically 0.5–1 mm in width and several centimeters long. Surface texture measurements show the crystallites to be almost entirely (100) in the plane of the film with the orthogonal <100>direction closely paralleling the scan direction. Mosfets were fabricated in these films with surface mobilities 66% of ones fabricated in single crystal silicon. An epitaxial layer with the same crystallographic features as the recrystallized film was grown on the film itself.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Also Lockheed Palo Alto Research Laboratory

References

REFERENCES

1. See for example, Laser and Electron Beam Solid Interactions and Materials Processing, Hess, Gibbons & Sigmon, eds. (North-Holland, N.Y., 1981)Google Scholar
2.Gat, A., Gibbons, J. F., Magee, T. J., Peng, J., Deline, V. R., Williams, P. and Evans, C. A. Jr., Appl. Phys. Lett. 32, 276 (1978)Google Scholar
3.Laff, R. A. and Hutchins, G. L., IEEE Trans. Elect. Dev. ED–21, 743 (1979).Google Scholar
4.Johnson, N., Stultz, T., Gibbons, J. (to be published).Google Scholar
5.Leitz, E., Brit. Pat. 691, 335 (1950).Google Scholar
6.Gilbert, G. G., Poehler, T. O. and Miller, C. F., J. Appl. Phys. 32, 1597 (1961).Google Scholar
7.Maserjian, J., Sol. St. Elect. 6, 477 (1963).Google Scholar
8.Poehler, T. O and Gilbert, G. B., Single Crystal Film, Sato, Francombe, eds. (Pergamon Press, 1964) pp. 129135.Google Scholar
9.Namba, S., J. Appl. Phys. 37, 1929 (1966).Google Scholar
10.Gat, A., Gerzberg, L., Gibbons, J. F., Magee, T. J., Peng, J., Hong, J. D., Appl. Phys. Lett. 33, 775 (1978).Google Scholar
11.Stultz, T. J. and Gibbons, J. F., Appl. Phys. Lett. 39, 498 (1981).Google Scholar
12.Fan, J. C. C., Geis, M. W. and Tsaur, B. Y., Appl. Phys. Lett. 38 365 (1981).Google Scholar
13.Pinizzotto, R. F., Lam, H. W., Vaandrager, B. L., Appl. Phys. Lett. 40, 388 (1982).Google Scholar
14.Leamy, H. J., Laser and Electron Beam Interactions with Solids, Celler, Appleton, eds.(North-Holland, N.Y. 1982) p. 467.Google Scholar
15.Secco d'Aragona, F., J. Elec. Chem. Soc. 119, 948 (1972).Google Scholar
16.Geis, M. W., Smith, H. I., Tsaur, B.-Y., Fan, J. C. C., Maby, E. W. and Antoniadis, D. A., Appl. Phys. Lett. 40, 158 (1982).Google Scholar
17.Kendall, D. L., Ann. Rev. Mater. Sci., Vol. 9, Vermilyea, Huggins Bube, eds., 373 (1979).Google Scholar
18.Maby, E. W., Geis, M. W., Lecoz, Y. L., Silversmith, D. J., Mountain, R. W., Antoniadis, D. A., IEEE Elect. Dev. Lett. EDL–2, 241 (1981).Google Scholar