Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T23:02:50.208Z Has data issue: false hasContentIssue false

Basic mechanisms of structural relaxation and diffusion in amorphous silicon

Published online by Cambridge University Press:  17 March 2011

G. T. Barkema
Affiliation:
Theoretical Physics, Utrecht University, Utrecht, The Netherlands
Normand Mousseau
Affiliation:
Department of Physics and Astronomy and CMSS, Ohio University, Athens, OH 45701, USA
R.L.C. Vink
Affiliation:
Instituut Fysische Informatica, Utrecht University, Utrecht, The Netherlands
Parthapratim Biswas
Affiliation:
Debye Institute, Utrecht University, Utrecht, The Netherlands
Get access

Abstract

The low-temperature dynamics in amorphous silicon occurs through a sequence of discrete, activated events that reorganize the topology of the network. In this review, we present some recent work done to understand better the nature of these events and the associated dynamics ina-Si. Using the activation-relaxation technique (ART), we generated more than 8000 events in a 1000-atom model ofa-Si, providing an extensive database of relaxation and diffusion mechanisms. The generic properties of these events, such as the number of involved atoms and the activation energies, were investigated and foundto be in agreement with experimental data. As it turns out, the bond-transposition mechanism proposed by Wooten, Winer and Weaire (WWW) some time ago plays an important role in the events generated by ART. We have therefore turned to an optimized version of the WWW algorithm to generate the best overall configurations ofa-Si available today. We discuss the details of the optimization and present the structural and electronic properties of the resulting models.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Weber, T. A. and Stillinger, F. H., Phys. Rev. B 32, 5402 ((1985).Google Scholar
[2] Boisvert, G., Lewis, L. J., and Yelon, A., Phys. Rev. Lett. 75, 469 ((1995).Google Scholar
[3] Barkema, G. T. and Mousseau, N., Phys. Rev. Lett. 77, 4358 ((1996).Google Scholar
[4] Mousseau, N. and Barkema, G. T., Phys. Rev. E 57, 2419 ((1998).10.1103/PhysRevE.57.2419Google Scholar
[5] Mousseau, N. and Barkema, G. T., Phys. Rev. B 61, 1898 ((2000).Google Scholar
[6] Wooten, F., Winer, K., and Weaire, D., Phys. Rev. Lett. 54, 1392 ((1985).Google Scholar
[7] Wooten, F. and Weaire, D., Solid State Physics 40, 1 ((1987).Google Scholar
[8] Frank, W., Gösele, U., Mehrer, H., and Seeger, A., in Diffusion in Crystalline Solids,edited by Murch, G. and Nowick, A. (Academic Press, New York, 1984).Google Scholar
[9] Roorda, S., Sinke, W. C., Poate, J. M., Jacobson, D. C., Dierker, S., Dennis, B. S., , Eaglesham, Spaepen, F.,andP. Fuoss, Phys. Rev. B 44, 3702 ((1991).10.1103/PhysRevB.44.3702Google Scholar
[10] Shin, J. H. and Atwater, H. A., Phys. Rev. B 48, 5964 ((1993).10.1103/PhysRevB.48.5964Google Scholar
[11] Müller, G., Kötz, G., Kalbitze, S., and Greaves, G. N., Phil. Mag. B 69, 177 ((1994).Google Scholar
[12] Malek, R. and Mousseau, N., Phys. Rev. E 62, 7723 ((2000).Google Scholar
[13] Mills, G. and Jónsson, H., Phys. Rev. Lett. 72, 1124 ((1994).10.1103/PhysRevLett.72.1124Google Scholar
[14] Jónsson, H., Mills, G. and Jacobsen, K.W., “Nudged Elastic Band Method for Finding Energy Paths of Transitions” in “Classical and Quantum Dynamics in Condensed Simulations”, ed. Berne, B.J., Ciccotti, G. and Coker, D.F. (World Scientific, 1998).Google Scholar
[15] Song, Y. and Mousseau, N., Phys. Rev. B 62, 15680 ((2000).10.1103/PhysRevB.62.15680Google Scholar
[16] Laaziri, K., Kycia, S., Roorda, S., Chicoine, M., Robertson, J. L., Wang, J., and Moss, S. C., Phys. Rev. Lett. 82, 3460 ((1999).10.1103/PhysRevLett.82.3460Google Scholar
[17] Pandey, K. C., Phys. Rev. Lett. 57, 2287 ((1986).Google Scholar
[18] Keating, P. N., Phys. Rev. 145, 637 ((1966).Google Scholar
[19] Djordjević, B. R., Thorpe, M. F., and Wooten, F.,Phys. Rev. B 52, 5685 ((1995).Google Scholar
[20] Barkema, G. T. and Mousseau, N., Phys. Rev. B 62, 4985 ((2000).Google Scholar
[21] Stijnman, M., Barkema, G. T., and Bisseling, R. H., to be published.Google Scholar
[22] Beeman, D., Tsu, R., and Thorpe, M. F., Phys. Rev. B 32, 874 ((1985).Google Scholar
[23] Vink, R. L. C., Barkema, G. T., and Weg, W. F. van der, Phys. Rev. B 63, 115210 ((2001).Google Scholar
[24] Laaziri, K., Kycia, S., Roorda, S., Chicoine, M., Robertson, J. L., Wang, J., and Moss, S. C., Phys. Rev. B 60 (1999).10.1103/PhysRevB.60.13520Google Scholar
[25] Kwon, I., Biswas, R., Wang, C. Z., Ho, K. M. and Soukoulis, C. M., Phys. Rev. B 49, 7242 ((1994).Google Scholar
[26] Biswas, Parthapratim and Barkema, G. T., to be published.Google Scholar
[27] Vink, R. L. C., Barkema, G. T., Weg, W. F. van der, and Mousseau, N., J. Non-Cryst. Solids 282, 248 ((2001).Google Scholar
[28] Lewis, L. J. and Nieminen, R. M., Phys. Rev. B 54,1459 ((1996).Google Scholar
[29] Mousseau, N. and Lewis, L. J., Phys. Rev. Lett. 78, 1484 ((1997).10.1103/PhysRevLett.78.1484Google Scholar
[30] Mousseau, N. and Lewis, L. J., Phys. Rev. B 56, 9461 ((1997).10.1103/PhysRevB.56.9461Google Scholar
[31] Sankey, O. F., and Drabold, D. A., Phys. Rev. Lett. 70, 3631 ((1993).Google Scholar