Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:50:15.079Z Has data issue: false hasContentIssue false

Barrier Metal Ions Drift into Porous Low k Dielectrics under Bias-Temperature stress

Published online by Cambridge University Press:  01 February 2011

Ming He
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Applied Physics, Troy, New York, United States
Ya Ou
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Applied Physics, Troy, New York, United States
Pei-I Wang
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Applied Physics, Troy, New York, United States
Lakshmanan H Vanamurthy
Affiliation:
[email protected], University at Albany, College of Nanoscale Science and Engineering, Albany, New York, United States
Hassaram Bakhru
Affiliation:
[email protected], University at Albany, College of Nanoscale Science and Engineering, Albany, New York, United States
Toh-Ming Lu
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Applied Physics, Troy, New York, United States
Get access

Abstract

Ta family has been used as barrier to prevent Cu diffusion into interlayer dielectric in IC applications. Recent experiments demonstrated a more severe flatband voltage shift (ΔVFB) occurred for Ta/porous low k dielectrics/Si capacitors compared to that of Cu/porous low k dielectrics/Si capacitors after a moderate bias temperature stress (BTS). The flatband voltage shift under BTS was interpreted as the penetration of Ta ions into porous low k dielectrics. However, this interpretation has been under debate. In this paper, by using Secondary Ion Mass Spectrometry (SIMS) backside sputter depth profile technique, we report a direct evidence of Ta ions inside porous methyl silsesquioxane (MSQ) in a Ta/MSQ/Si structure after BTS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Clevenger, L. A. Bojarczuk, N. A. Holloway, K. Harper, J.M. E. Cabral, C. Jr. , Schad, R. G., Cardone, F. and Stolt, L. J. Appl. Phys. 73, 300 (1993).Google Scholar
2 Li, S. Park, H. S. Liang, M. H. Yip, T. H. and Prabhakar, O. Thin Solid Films 462-463, 192 (2004).Google Scholar
3 Rossnagel, S. M. and Kim, H. J. Vac. Sci. Technol. B 21, 2550 (2003).Google Scholar
4 Rosenberg, R. Edelstein, D. C. Hu, C. K. and Rodbell, K. P. Annu. Rev. Mater. Sci. 30, 229 (2000).Google Scholar
5 Rodriguez, O. R. Cho, W. Saxena, R. Plawsky, J. L. and Gill, W. N. J. Appl. Phys. 98, 024108 (2005).Google Scholar
6 Mallikarjunan, A. Murarka, S. P. and Lu, T. M. Appl. Phys. Lett. 79, 1855 (2001).Google Scholar
7 Wang, P.-I. Juneja, J. S. Ou, Y. Lu, T. M. and Spencer, G. S. J. Electrochem. Soc. 155, H53 (2008).Google Scholar
8 Ciofi, I. Týkei, Z., Mangraviti, G. and Beyer, G. in Materials and Processes for Advanced Interconnects for Microelectronics, edited by Gambino, J. Ogawa, S. Gan, C.L. Tokei, Z. (Mater. Res. Soc. Symp. Proc. 1079E, Warrendale, PA, 2008) pp. N05-08.Google Scholar
9 Ciofi, I. Týkei, Z., Saglimbeni, M. and Hove, M. V. in Materials, Technology and Reliability of Low-k Dielectrics and Copper Interconnects, edited by Tsui, T. Y. Joo, Y.-C., Michaelson, L. Lane, M. and Volinsky, A. A. (Mater. Res. Soc. Symp. Proc. 914, Warrendale, PA, 2006) pp. F0202.Google Scholar
10 Fang, K. L. and Tsui, B. Y. J. Appl. Phys. 93, 5546 (2003).Google Scholar
11 Ou, Y. Wang, P. I. He, M. Lu, T. M. Leung, P. and Spooner, T. A. J. Electrochem. Soc. 155, G283 (2008).Google Scholar
12 Lareau, R. T. Secondary Ion Mass Spectrometry SIMS VI, (John Wiley & Sons, Paris, 1987) p. 427.Google Scholar
13 Morgen, M. Ryan, E. T. Zhao, J. H. Hu, C. Cho, T. and Ho, P. S. Annu. Rev. Mater. Sci. 30, 645 (2000).Google Scholar
14 Sze, S. M. Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, New York, 1981) p. 371.Google Scholar
15 Sze, S. M. Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, New York, 1981) p. 392.Google Scholar
16 McBrayer, J. D. Swanson, R. M. and Sigmon, T. W. J. Electrochem. Soc. 133, 1242 (1986).Google Scholar
17 McPherson, J. W. and Mogul, H. C. J. Appl. Phys. 84, 1513 (1998).Google Scholar
18 Tan, T. L. Gan, C. L. Du, A. Y. and Cheng, C. K. J. Appl. Phys. 106, 043517 (2009).Google Scholar