Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T03:48:26.908Z Has data issue: false hasContentIssue false

Ballistic Electron Emission Luminescence of InAs Quantum Dots Embedded in a GaAs/AlxGa1−xAs Heterostructure

Published online by Cambridge University Press:  01 February 2011

Wei Yi
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.
Ian Appelbaum
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.
Kasey J. Russell
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.
Venkatesh Narayanamurti
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.
Micah P. Hanson
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106, U.S.A.
Arthur C. Gossard
Affiliation:
Materials Department, University of California, Santa Barbara, CA 93106, U.S.A.
Get access

Abstract

Ballistic electron emission luminescence (BEEL) is a further development of ballistic electron emission microscopy (BEEM) combining three-terminal hot electron injection and interband radiative recombination in direct-gap semiconductor materials. By using a planar tunnel-junction emitter rather than a STM tip, a spectrographic analysis of the induced electroluminescence can be performed with the help of much higher current injection level. We demonstrate the operational principle of BEEL in a GaAs/AlxGa1−xAs heterostructure with a layer of InAs quantum dots (QDs) as the optical active layer. The wavelength-resolved BEEL spectra from planar tunnel-junction devices disclose the QD luminescence as a peak near 1.34 eV accompanied with a linear quantum-confined Stark shift. At higher collector voltage, luminescence from bulk states of GaAs peaked at 1.48 eV is observed. The spectrally integrated BEEL intensity as a function of collector voltage fits well with the results from STM tip injection, which is measured in a single-photon-counting mode. Measurement of ballistic electron current spectroscopy is made possible by freezing out the thermionic leakage current at low temperatures. Our results indicate that it is feasible to simultaneously acquire topographic, electronic and photonic information of buried light-emitting semiconductor heterostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kaiser, W. J. and Bell, L. D., Phys. Rev. Lett. 60, 1406 (1988).Google Scholar
2. For reviews, see Prietsch, M., Phys. Rep. 253, 163 (1995);Google Scholar
Narayanamurti, V. and Kozhevnikov, M., Phys. Rep. 349, 447 (2001);Google Scholar
Smoliner, J., Rakoczy, D. and Kast, M, Rep. Prog. Phys. 67, 1863 (2004).Google Scholar
3. Fafard, S., Hinzer, K., Raymond, S., Dion, M., McCaffrey, J., Feng, Y., and Charbonneau, S., Science 274, 1350 (1996).Google Scholar
4. Russell, K. J., Appelbaum, I., Temkin, H., Perry, C. H., Narayanamurti, V., Hanson, M. P., and Gossard, A. C., Appl. Phys. Lett. 82, 2960 (2003).Google Scholar
5. Appelbaum, I., Russell, K. J., Narayanamurti, V., Monsma, D. J., Marcus, C. M., Hanson, M. P., Gossard, A. C., Temkin, H., and Perry, C. H., Appl. Phys. Lett. 82, 4498 (2003).Google Scholar
6. Appelbaum, I., Russell, K. J., Kozhevnikov, M., Narayanamurti, V., Hanson, M. P., and Gossard, A. C., Appl. Phys. Lett. 84, 547 (2004).Google Scholar
7. Appelbaum, I., Russell, K. J., Monsma, D. J., Narayanamurti, V., Marcus, C. M., Hanson, M. P., and Gossard, A. C., Appl. Phys. Lett. 83, 4571 (2003).Google Scholar
8. García, J. M., Mankad, T., Holtz, P. O., Wellman, P. J., and Petroff, P. M., Appl. Phys. Lett. 72, 3172 (1998).Google Scholar
9. Miller, D. A. B., Chemla, D. S., Damen, T. C., Gossard, A. C., Wiegmann, W., Wood, T. H., and Burrus, C. A., Phys. Rev. Lett. 53, 2173 (1984).Google Scholar
10. Hsu, T. M., Chang, W.-H., Huang, C. C., Yeh, N. T., and Chyi, J.-I., Appl. Phys. Lett. 78, 1760 (2001).Google Scholar