Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T06:16:56.725Z Has data issue: false hasContentIssue false

B2 order transformation in a Fe – 25 at% Co – 9 at% Mo alloy

Published online by Cambridge University Press:  12 February 2015

Christoph Turk
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Roseggerstraße 12, 8700 Leoben
Gert Kellezi
Affiliation:
Böhler Edelstahl GmbH & Co KG, Mariazellerstraße 25, 8605 Kapfenberg, Austria
Harald Leitner
Affiliation:
Böhler Edelstahl GmbH & Co KG, Mariazellerstraße 25, 8605 Kapfenberg, Austria
Peter Staron
Affiliation:
GEMS, Helmholtz-Zentrum Geesthacht, Max-Planck-Str.1, D-21502 Geesthacht, Germany
Weimin Gan
Affiliation:
GEMS, Helmholtz-Zentrum Geesthacht, Max-Planck-Str.1, D-21502 Geesthacht, Germany
Helmut Clemens
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Roseggerstraße 12, 8700 Leoben
Sophie Primig
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Roseggerstraße 12, 8700 Leoben
Get access

Abstract

The ternary system Fe - 25 at% Co - 9 at% Mo shows an age hardening behavior similar to aluminum alloys. After solution annealing followed by rapid quenching, the Fe-Co-matrix is hardened during subsequent aging through precipitation of the intermetallic µ-phase (Fe,Co)7Mo6. In aged condition the entire Mo content is present in coarse primary and fine µ-phase particles and, therefore, the matrix consists exclusively of 71 at% Fe and 29 at% Co. The binary system Fe-Co shows a transformation from the disordered bcc structure to the ordered B2 structure between 25 and 72 at% Co at a critical ordering temperature ranging from room temperature to 723°C. As a consequence, the remaining overaged matrix in the Fe - 25 at% Co - 9 at% Mo system should also show such a transition. However, an ordered phase is brittle and, thus, not wanted for many applications. Better mechanical properties in terms of ductility can be achieved with a partially or fully disordered phase. Such a state can be obtained by rapid quenching from temperatures above the critical ordering temperature. In this study such an approach was implemented on the ternary Fe - 25 at% Co - 9 at% Mo alloy. The effect of different cooling rates on the mechanical properties was investigated by means of hardness testing. The actual ordering transition of the Fe - 29 at% Co matrix was determined with differential scanning calorimetry and neutron diffraction.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Leitner, H., Schober, M., Clemens, H., Caliskanoglu, D., Danoix, F., Int. J. Mater. Res. 99, 367 (2008).CrossRefGoogle Scholar
Sourmail, T., Prog. Mater. Sci. 50, 816 (2005).CrossRefGoogle Scholar
Zhao, L., Baker, I., Acta Metall. Mater. 42, 1953 (1994).CrossRefGoogle Scholar
Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., Sbirrazzuoli, N., Thermochim. Acta 520, 1 (2011).CrossRefGoogle Scholar
Hofmann, M., Gan, W. M., Rebelo-Kornmeier, J., Schöbel, M., Neutron News 24, 14 (2013).CrossRefGoogle Scholar
Gilles, R., Hofmann, M., Johnson, F., Gao, Y., Mukherji, D., Hugenschmidt, C., Pikart, P., J. Alloys Compd. 509, 195 (2011).CrossRefGoogle Scholar
Yokoyama, T., Takezawa, T., Higashida, Y., Trans. Japan Inst. Met. 12, 30 (1971).CrossRefGoogle Scholar
Asano, S. K. H., Bando, Y., Nakanishi, N., Trans. Japan Inst. Met. 8, 180 (1967).CrossRefGoogle Scholar
Gomankov, V. I., Litvin, D. F., Loshmanov, A. A., Lyashchenko, B. G., Puzei, I. M., Sov. Phys.-Cryst. 7, 788 (1963).Google Scholar
Ohnuma, I., Enoki, H., Ikeda, O., Kainuma, R., Ohtani, H., Sundman, B., Ishida, K., Acta Mater. 50, 379 (2002).CrossRefGoogle Scholar
Shull, C., Siegel, S., Phys. Rev. 75, 1008, (1949).CrossRefGoogle Scholar
Mal’tsev, Y. I., Gorman’kov, V. I., Puzey, I. M., Skokov, A. D., Phys. Met. Met. 43, 47 (1977).Google Scholar
Gilles, R., Hofmann, M., Gao, Y., Johnson, F., Iorio, L., Larsen, M., Liang, F., Hoelzel, M., Barbier, B., Metall. Mater. Trans. A 41, 1144 (2009).CrossRefGoogle Scholar