Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-03T05:24:17.220Z Has data issue: false hasContentIssue false

Automotive Applications of Sol-Gel Processed Materials: Novel, Low Power Consumption, Electrically Heatable Catalyst Devices

Published online by Cambridge University Press:  10 February 2011

S. R. Nakouzi
Affiliation:
Chemistry Department, Ford Motor Co., P.O. Box 2053, MD 3083, Dearborn, MI 48121
J. R. McBride
Affiliation:
Physics Department, Ford Motor Co., P.O. Box 2053, MD 3028, Dearborn, MI 48121
K. E. Nietering
Affiliation:
Physics Department, Ford Motor Co., P.O. Box 2053, MD 3028, Dearborn, MI 48121
J. H. Visser
Affiliation:
Physics Department, Ford Motor Co., P.O. Box 2053, MD 3028, Dearborn, MI 48121
A. A. Adamczyk Jr
Affiliation:
Chemical Engineering Department, P.O. Box 2053, MD 3179, Dearborn, MI 48121
C. K. Narula
Affiliation:
Chemistry Department, Ford Motor Co., P.O. Box 2053, MD 3083, Dearborn, MI 48121
Get access

Abstract

Exhaust gas heat is the primary source of warming in a conventional automotive exhaust catalyst. It typically becomes operational within minutes after the initial start-up of an engine, when it attains temperatures greater than approximately 350°C. However, around 70% of the total hydrocarbon and carbon monoxide (CO) emissions of a modern gasoline powered vehicle, under a normal driving cycle, are released during this period of cold-start. One of the strategies suggested to treat the pollutants during the first minute after initial start-up involves electrically heating the catalyst. However, devices developed for this purpose are power intensive, can require a second battery and can reduce fuel economy. The increased weight, in turn, results in increased pollution. Here we describe a low power consumption prototype which contains a conducting layer beneath the washcoat. The prototype [4 cm2] was tested at a gas flow rate of 100 seem and required less than 5 Watts to attain temperatures greater than 350°C in less than 10 seconds. The prototype was tested in a flow reactor and found to rapidly heat up to light-off temperatures where the conversion of the hydrocarbons and CO takes place. We also summarize progress made in our laboratory in the fabrication of a test device employing sol-gel processed metal oxide films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heck, R.M., Farrauto, R.J., Catalytic Air Pollution Control: Commercial Technologies; Van Nostrana Reinhold: New York, 1995.Google Scholar
2. Narula, C.K., Allison, J.E., Bauer, D., Gandhi, H.S., Chem. Mater., 1996, 8, 984.Google Scholar
3. Whittenberger, W.A.; Kubsh, J.E.; SAE 910613, 1991.Google Scholar
Hurley, R.G.; Hansen, L.A.; LaCourse, D.L.; Watkins, W.L.H.; Gandhi, H.S.; Whittenberger, W.A.; SAE 900504, 1990.Google Scholar
Heimrich, M.J.; Albu, S.; Osborne, J.; SAE 902115, 1990.Google Scholar
4. Hurley, R.G.; Guttridge, D.L.; Hansen, L.A.; Pawlowicz, R.J.; Smolinski, J.M.; Gandhi, H.S.; SAE 912384, 1991.Google Scholar
5. Mizuno, H.; Abe, F.; Hashimoto, S.; Kondo, T.; SAE 940466, 1994.Google Scholar
6. Häfele, E.; Säger, M.; WO 92/17692, 1992.Google Scholar
7. Burggraaf, A.J.; Keizer, K.; van Hassel, B.A.; Solid State Ionics, 1989, 32/33, 771.Google Scholar
8. LaCourse, W.C.; Kim, S.; Science of Ceramic Processing, eds. Hench, L.L.; Ulrich, D.R., Wiley, New York, 1986.Google Scholar
9. Narula, C.K.; Visser, J.H.; Adamczyk, A.A.; US 5,536,857, 1996.Google Scholar
10. Arfsten, N.J.; J. Non-Cryst. Solids, 1984, 63, 243.Google Scholar
Vossen, J.L., J. Phys. Thin Films, 1977, 9, 1.Google Scholar
Nakahara, T.; Takahata, K.; Matsuura, S.; Proc. Electrochem. Soc, 1987, 87–89, 55.Google Scholar
11. Kane, J.; Schweizer, H.P.; Kern, W.; J. Electrochem. Soc, 1975, 122, 1144.Google Scholar
Marton, J.P.; Lepic, D.A.; J. Electrochem. Soc., 1976, 123, 234.Google Scholar
Rnadhawa, H.S.; Mathews, W.D.; Bunshah, R.F.; Thin Solid Films, 1981, 83, 267.Google Scholar
Lehman, H.W.; Widner, R.; Thin Solid Films, 1975, 27, 359.Google Scholar
Muranaka, S.; Bando, Y.; Takada, T.; Thin Solid Films, 1981, 86, 11.Google Scholar
12. Hampden-Smith, M.J.; Wark, T.A.; Coord. Chem. Rev.; 1992, 112, 81 Google Scholar
13. Chandler, C.D.; Falion, G.D.; Koplick, A.J.; West, B.O.; Aut. J. Chem.; 1987, 40, 1427.Google Scholar
14. Narula, C.K.; Watkins, W.L.H.; Shelef, M.; US 5,210,062, 1993.Google Scholar
15. Pakko, J.D., Adamczyk, A.A. Jr, Siegl, W.O., Pawlowicz, R.J., SAE Technical Paper Series, #941999, Feb. 1994.Google Scholar