Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:34:20.999Z Has data issue: false hasContentIssue false

Automated Crystallite Orientation and Phase Mapping in a Transmission Electron Microscope

Published online by Cambridge University Press:  17 June 2011

Sergei Rouvimov
Affiliation:
Department of Physics, Portland State University, Portland, OR 97207-0751, U.S.A. & Oregon Nanoscience and Microtechnologies Institute, www.onami.us Department of Chemistry, University of Oregon, Eugene, OR 97401-3753, U.S.A. & Oregon Nanoscience and Microtechnologies Institute
Peter Moeck
Affiliation:
Department of Physics, Portland State University, Portland, OR 97207-0751, U.S.A. & Oregon Nanoscience and Microtechnologies Institute, www.onami.us
Ines Häusler
Affiliation:
Institute of Physics, Humboldt University of Berlin, Newtonstreet 15, 12489 Berlin, Germany
Wolfgang Neumann
Affiliation:
Department of Chemistry, University of Oregon, Eugene, OR 97401-3753, U.S.A. & Oregon Nanoscience and Microtechnologies Institute Institute of Physics, Humboldt University of Berlin, Newtonstreet 15, 12489 Berlin, Germany
Stavros Nicolopoulos
Affiliation:
NanoMEGAS SPRL, Boulevard Edmond Machterns No 79, Saint Jean Molenbeek, Brussels, B-1080, Belgium, nanomegas.com
Get access

Abstract

An automated technique for the mapping of nanocrystal phases and orientations in a transmission electron microscope (TEM) is briefly described. It is primarily based on the projected reciprocal lattice geometry that is extracted automatically from precession electron diffraction (PED) enhanced spot patterns. The required hardware allows for a scanning-precession movement of the primary electron beam on the crystalline sample and can be interfaced to any newer or older mid-voltage TEM. Comprehensive open-access crystallographic databases that may be used in support of this technique are mentioned.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dingley, D., J. Microscopy 213, 214 (2004).Google Scholar
2. Dingley, D. J. and Nowell, M. M., Michrochim. Acta 147, 157 (2004).Google Scholar
3. Dingley, D. J., Microchim. Acta 155, 1922 (2006).Google Scholar
4. Rauch, E., Véron, M., Portillo, J., Bultreys, D., Maniette, Y., and Nicolopoulos, S., Microscopy and Analysis Issue 93, pp. S5S8, November 2008.Google Scholar
5. Vincent, R. and Midgley, P., Ultramicroscopy 53, 271 (1994).Google Scholar
6. Moeck, P. and Rouvimov, S., Zeitschrift für Kristallographie 225, 110 (2010); (Special Issue on “Precession Electron Crystallography”, guest editors: Chris Gilmore and Douglas Dorset).Google Scholar
7. Rauch, E. and Dupuy, L., Archives of Metallurgy and Materials 50, 87 (2005).Google Scholar
8. Rauch, E. and Veron, M., Mat. –wiss. u. Werkstofftech. 36, 552 (2005).Google Scholar
9. Moeck, P., Rouvimov, S., Rauch, E. F., and Nicolopoulos, S., in: Electron Crystallography for Materials Research and Quantitative Characterization of Nanostructured Materials, (Eds.: Moeck, P., Hovmöller, S., Nicolopoulos, S., Rouvimov, S., Petkov, V., Gateshki, M., and Fraundorf, P.), Mater. Res. Soc. Symp. Proc. 1184, 49 (2009).Google Scholar
10. http//cod.ibt.lt (in Lithuania), mirrored at: http://www.crystallography.net and http://cod.ensicaen.fr/ (in France), as well as at: http://nanocrystallography.org and http://nanocrystallography.net (in Oregon, USA). Also accessible under a different search surface at: http://fireball.phys.wvu.edu/cod/ (in West Virginia, USA). Of these six web sites, http://nanocrystallography.net is currently the only mirror where the atomic structures can be visualized interactively.Google Scholar
11. Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P., and Le Bail, A., J. Appl. Cryst. 42, 726 (2009); open access: http://journals.iucr.org/j/issues/2009/04/00/kk5039/kk5039.pdf.Google Scholar
14. http://crystdb.nims.go.jp, data on some 30,000 metals and alloys.Google Scholar
15. Champness, P. E., Electron Diffraction in the Transmission Electron Microscope, Oxford, BIOS Scientific Publishers Ltd., (Royal Microscopical Society MICROSCOPY HANDBOOKS, vol. 47), 2001, pp. 3536.Google Scholar
16. Rauch, E. F. and Dupuy, L., J. Appl. Cryst. 39, 104 (2006).Google Scholar
17. Rebled, J. M., Yedra, L., Portillo, J., Estradé, S., and Peiró, F., Proc. IMC 17, Rio de Janeiro, 2010.Google Scholar
18. Moeck, P., Rouvimov, S., Rauch, E. F., Véron, M., Kirmse, H., Häusler, I., Neumann, W., Bultreys, D., Maniette, Y., and Nicolopoulos, S., Cryst. Res. Technol, accepted for the 2011 special issue on “Novel Developments in Electron Diffraction”.Google Scholar