Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T23:15:53.464Z Has data issue: false hasContentIssue false

Au-Rh and Au-Pd Nanoalloys supported on well-defined Rutile Titania Nanorods for Aromatics Hydrogenation Applications

Published online by Cambridge University Press:  18 March 2014

Zere Konuspayeva
Affiliation:
Institut de Recherches sur la Catalyse et l’Environnement (IRCELYON), CNRS – Université Lyon 1, 69626 Villeurbanne Cedex, France Al-Farabi Kazakh National University, Department of chemistry and chemical technology, al-Farabi avenue 71, 050038 Almaty, Kazakhstan
Gilles Berhault
Affiliation:
Institut de Recherches sur la Catalyse et l’Environnement (IRCELYON), CNRS – Université Lyon 1, 69626 Villeurbanne Cedex, France
Pavel Afanasiev
Affiliation:
Institut de Recherches sur la Catalyse et l’Environnement (IRCELYON), CNRS – Université Lyon 1, 69626 Villeurbanne Cedex, France
Thanh-Son Nguyen
Affiliation:
Institut de Recherches sur la Catalyse et l’Environnement (IRCELYON), CNRS – Université Lyon 1, 69626 Villeurbanne Cedex, France
Ali Auyezov
Affiliation:
Al-Farabi Kazakh National University, Department of chemistry and chemical technology, al-Farabi avenue 71, 050038 Almaty, Kazakhstan
Mukhambetkali Burkitbayev
Affiliation:
Al-Farabi Kazakh National University, Department of chemistry and chemical technology, al-Farabi avenue 71, 050038 Almaty, Kazakhstan
Laurent Piccolo
Affiliation:
Institut de Recherches sur la Catalyse et l’Environnement (IRCELYON), CNRS – Université Lyon 1, 69626 Villeurbanne Cedex, France
Get access

Abstract

TiO2-supported bimetallic Au-Rh and Au-Pd nanocrystals were synthesized using both impregnation and colloidal approaches employing HAuCl4 and RhCl3 as precursors. The as-obtained bimetallic catalysts were then supported onto TiO2 rutile nanorods in order to provide catalytic systems with well-defined metal-support interactions for HRTEM characterization. The results revealed the superiority of the colloidal approach over the impregnation technique to obtain bimetallic nanoparticles (4 nm in size) with tunable composition. However, for Au-Rh/TiO2, optimization of the procedure of the sol immobilization onto the TiO2 support was required to avoid possible Rh re-dissolution. Preparation of Au-Pd/TiO2 followed the same procedure but with more acidic conditions necessary to perform immobilization on the support. UV-vis spectroscopy and XRD results suggest formation of a Rh-rich shell over an Au core center for Au-Rh NPs, while Au-Pd NPs present a pure alloy structure. Au-Rh/TiO2 was used for performing the high-pressure hydroconversion of tetralin in the presence or not of H2S. The results indicate a strong thioresistance induced by the addition of Au to Rh.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Piccolo, L., in Nanoalloys : Synthésis, Structure and Properties, Alloyeau, D., Mottet, C., Ricolleau, C. (Eds.) (Springer-Verlag, London, 2012).Google Scholar
Hutchings, G. J. and Kiely, C. J., Acc. Chem. Res. 46, 1759 (2013).CrossRefGoogle Scholar
Essinger-Hileman, E. R., DeCicco, D., Bondi, J. F., and Schaak, R. E., J. Mater. Chem. 21, 11599 (2011).CrossRefGoogle Scholar
Kukovecz, A., Potari, G., Oszko, A., Konya, Z., Erdohelyi, A., and Kiss, J., Surf. Sci. 605, 1048 (2011).CrossRefGoogle Scholar
Li, H. and Afanasiev, P., Mater. Res. Bull. 46, 2506 (2011).CrossRefGoogle Scholar
Li, H., Vrinat, M., Berhault, G., Li, D., Nie, H., and Afanasiev, P., Mater. Res. Bull. 48, 3374 (2013).CrossRefGoogle Scholar
Piccolo, L., Nassreddine, S., Toussaint, G., and Geantet, C., ChemSusChem 5, 1717 (2012).CrossRefGoogle Scholar
Zhao, Y., Jia, L., Medrano, J. A., Ross, J. R. H., and Lefferts, L., ACS Catal. 3, 2341 (2013).CrossRefGoogle Scholar
Csapó, E., Oszkó, A., Varga, E., Juhász, Á., Buzás, N., Kőrösi, L., Majzik, A., and Dékány, I., Colloids Surf. A 415, 281 (2012).CrossRefGoogle Scholar
Pradhan, M., Sarkar, S., Sinha, A. K., Basu, M., and Pal, T., J. Phys. Chem. C 114, 16129 (2010).CrossRefGoogle Scholar
Hirakawa, K. and Toshima, N., Chem. Lett. 32, 78 (2003).CrossRefGoogle Scholar
Sutyagina, A. A. and Vovchenko, G. D., Surf. Technol. 13, 257 (1981).CrossRefGoogle Scholar
Ali, A.-G. A., Ali, L. I., Aboul-Fotouh, S., and Aboul-Gheit, A. K., Appl. Catal. A 170, 285 (1998).CrossRefGoogle Scholar
Konuspayev, S. R., Shaimardan, M., Nurbaeva, D. R., Auezov, A. B., and Boronin, A. I., Pet. Chem. 50, 47 (2010).CrossRefGoogle Scholar