Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T13:30:19.411Z Has data issue: false hasContentIssue false

Attrition-enhanced nanocomposite synthesis of indium-filled, iron-substituted skutterudite antimonides for improved performance thermoelectrics

Published online by Cambridge University Press:  28 February 2013

James Eilertsen
Affiliation:
Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA Empa,Solid State Chemistry and Catalysis, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433-7817, USA
Matthias Trottmann
Affiliation:
Empa,Solid State Chemistry and Catalysis, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland
Sascha Populoh
Affiliation:
Empa,Solid State Chemistry and Catalysis, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland
Romain Berthelot
Affiliation:
Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
Charles M. Cooke
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433-7817, USA UES, Inc., Dayton OH 45432, USA
Michael K. Cinibulk
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433-7817, USA
Simone Pokrant
Affiliation:
Empa,Solid State Chemistry and Catalysis, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland
Anke Weidenkaff
Affiliation:
Empa,Solid State Chemistry and Catalysis, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland
M. A. Subramanian
Affiliation:
Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
Get access

Abstract

Nanostructuring has been the foremost approach to the manufacture of high-performance thermoelectric materials for nearly a decade. This study explores a novel nanostructuring technique, attrition-enhanced nanocomposite synthesis, in maximum indium-filled, iron-substituted cobalt antimonide skutterudites. In0.3Fe0.8Co3.2Sb12 was synthesized and subjected to varying degrees of mechanical attrition (via ball milling). These samples exhibited increased indium precipitation coincident with the duration of mechanical attrition. Indium readily diffused through the skutterudite crystal structure and rapidly precipitated forming 20-50 nm-sized indium-rich inclusions during sintering.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Snyder, G. J.; Toberer, E. S. Nature Materials 2008, 7, 105.CrossRefGoogle Scholar
Bell, L. E. Science 2008, 321, 1457.CrossRefGoogle Scholar
Rowe, D. M. CRC handbook of thermoelectrics; CRC Press: Boca Raton, FL, 1995.CrossRefGoogle Scholar
Rowe, D. M.; Bhandari, C. M. Modern thermoelectrics; Reston Pub. Co.: Reston, Virginia, 1983.Google Scholar
Nolas, G. S.; Morelli, D. T.; Tritt, T. M. Annual Review of Materials Science 1999, 29, 89.CrossRefGoogle Scholar
Tritt, T. M.; Subramanian, M. A. Mrs Bulletin 2006, 31, 188.CrossRefGoogle Scholar
Sales, B. C.; Mandrus, D.; Chakoumakos, B. C.; Keppens, V.; Thompson, J. R. Physical Review B 1997, 56, 15081.CrossRefGoogle Scholar
Keppens, V.; Mandrus, D.; Sales, B. C.; Chakoumakos, B. C.; Dai, P.; Coldea, R.; Maple, M. B.; Gajewski, D. A.; Freeman, E. J.; Bennington, S. Nature 1998, 395, 876.CrossRefGoogle Scholar
Kleinke, H. Chemistry of Materials 2010, 22, 604.CrossRefGoogle Scholar
Sootsman, J. R.; Chung, D. Y.; Kanatzidis, M. G. Angewandte Chemie-International Edition 2009, 48, 8616.CrossRefGoogle Scholar
Vineis, C. J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M. G. Advanced Materials 2010, 22, 3970.CrossRefGoogle Scholar
Nolas, G. S. In Thermoelectric Materials 1998-the Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications; Tritt, T. M. K. M. G. M. G. D. L. H. B., Ed. 1999; Vol. 545, p 435.Google Scholar
Iversen, B. B.; Palmqvist, A. E. C.; Cox, D. E.; Nolas, G. S.; Stucky, G. D.; Blake, N. P.; Metiu, H. J ournal of Solid State Chemistry 2000, 149, 455.CrossRefGoogle Scholar
Sales, B. C.; Mandrus, D.; Williams, R. K. Science 1996, 272, 1325.CrossRefGoogle Scholar
Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Science 2004, 303, 818.CrossRefGoogle Scholar
Martin, J.; Wang, L.; Chen, L.; Nolas, G. S. Physical Review B 2009, 79.Google Scholar
Kanatzidis, M. G. Chemistry of Materials 2010, 22, 648.CrossRefGoogle Scholar
Girard, S. N.; He, J.; Li, C.; Moses, S.; Wang, G.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Nano Letters 2010, 10, 2825.CrossRefGoogle Scholar
Han, M. K.; Hoang, K.; Kong, H. J.; Pcionek, R.; Uher, C.; Paraskevopoulos, K. M.; Mahanti, S. D.; Kanatzidis, M. G. Chemistry of Materials 2008, 20, 3512.CrossRefGoogle Scholar
Chen, G.; Dresselhaus, M. S.; Dresselhaus, G.; Fleurial, J. P.; Caillat, T. International Materials Reviews 2003, 48, 45.CrossRefGoogle Scholar
Eilertsen, J.; Rouvimov, S.; Subramanian, M. A. Acta Materialia 2012, 60, 2178.CrossRefGoogle Scholar
Eilertsen, J.; Berthelot, R.; Sleight, A. W.; Subramanian, M. A. Journal of Solid State Chemistry 2012, 190, 238.CrossRefGoogle Scholar
Xiong, Z.; Xi, L. L.; Ding, J.; Chen, X. H.; Huang, X. Y.; Gu, H.; Chen, L. D.; Zhang, W. Q. Journal of Materials Research 2011, 26, 1848.CrossRefGoogle Scholar
Eilertsen, J.; Li, J.; Rouvimov, S.; Subramanian, M. A. Journal of Alloys and Compounds 2011, 509, 6289.CrossRefGoogle Scholar
He, T.; Chen, J.; Rosenfeld, H. D.; Subramanian, M. A. Chemistry of Materials 2006, 18, 759.CrossRefGoogle Scholar
Lebail, A.; Duroy, H.; Fourquet, J. L. Mater. Res. Bull. 1988, 23, 447.CrossRefGoogle Scholar
Rodríguez-Carvajal, J. Physica B: Condensed Matter 1993, 192, 55.CrossRefGoogle Scholar