Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T09:44:19.216Z Has data issue: false hasContentIssue false

Atomistic Structure and Composition of a Ag/Ni Interphase Boundary

Published online by Cambridge University Press:  21 February 2011

P. Gumbsch
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, 7000 Stuttgart, FRG
M. S. Daw
Affiliation:
Sandia National Laboratories, Livermore, California 94550
S. M. Foiles
Affiliation:
Sandia National Laboratories, Livermore, California 94550
H. F. Fischmeister
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, 7000 Stuttgart, FRG
Get access

Abstract

Using the embedded atom method we atomistically model the compensation of the misfit induced stresses in a “cube on cube” oriented Ag/Ni bicrystal with (011) interface plane, in which zones of maximum misfit (misfit dislocations) run along the [100] and the [011] directions.

The ideal interface corresponds to an abrupt transition between Ag and Ni. The interfacial enthalpy is found to be lowered by the introduction of vacancies on the Ni side (equivalently, vacancies are trapped on the Ni side of the boundary). Pursuing this perspective, we find that the interfacial enthalpy is lowered considerably by the removal of a complete line of Ni atoms along the [011] direction from the Ni side of the boundary. The minimum energy configuration consists of a Ni layer whose atomic density is reduced by 16% sandwiched between the ordinary Ni and Ag lattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tsakalakos, T.; Jankowski, A. F.: Ann. Rev. Mater. Sci. 16, 293313 (1986).Google Scholar
[2] Krishnan, R.; Tessier, M.: IEEE Trans. MAG–23, 37133715 (1987).Google Scholar
[3] Maurer, R.; Fiscemeister, H. F.: Acta metall. 37, 11771189 (1989).Google Scholar
[4] Wolf, U.; Foiles, S.; Fischmeister, H. F.: to be published.Google Scholar
[5] Foiles, S. M.; Baskes, M. I.; Daw, M. S.: Phys. Rev. B 33, 7983 (1986).Google Scholar
[6] Daw, M. S.: Phys. Rev. B 39, 74417452 (1989).Google Scholar
[7] Fletcher, R.; Reeves, C. M.: Computer J. 7, 149154 (1964).Google Scholar