Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T02:55:54.483Z Has data issue: false hasContentIssue false

Atomistic Modeling Of Co Growth On Cu(111)

Published online by Cambridge University Press:  17 March 2011

Joseph Khalil
Affiliation:
Ohio Aerospace Institute, 22800 Cedar Point Road, Cleveland, OH 44142, USA and National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH, 44135, USA
Guillermo Bozzolo
Affiliation:
Ohio Aerospace Institute, 22800 Cedar Point Road, Cleveland, OH 44142, USA and National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH, 44135, USA
Daniel Farías
Affiliation:
Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
A.L. Vázquez de Parga
Affiliation:
Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
J.J. de Miguel
Affiliation:
Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
R. Miranda
Affiliation:
Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
Get access

Abstract

The BFS method for alloys is applied to the study of Co growth on Cu(111). The parameterization of the Co-Cu system is obtained from first-principles calculations, and tested against known experimental features for low coverage Co deposition on Cu(100) and Cu(111). Atomistic simulations are performed to investigate the behavior of Co on Cu(111) as a function of coverage.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Figuera, J. de la, Prieto, J.E., Ocal, C. and Miranda, R., Surf. Sci. 307–309 (1994) 538.Google Scholar
2. Bozzolo, G., Noebe, R.D., Ferrante, J. and Amador, C., J. Comput.-Aided Mater. Design 6 (1999) 1.Google Scholar
3. Smith, J. R., Perry, T., Banerjea, A., Ferrante, J. and Bozzolo, G., Phys. Rev. B 44 (1991) 6444; G. Bozzolo, J. Ferrante and A. M. Rodriguez, J. Computer-Aided Mater. Design 1 (1993) 285.Google Scholar
4. Blaha, P., Schwartz, K. and Luitz, J., WIEN97, Vienna University of Technology. Improved and updated Unix version of the copyrighted WIEN code, Blaha, P., Schwartz, P., Sorantin, P. and Trickey, S B, Comput. Phys. Commun. 59 (1990) 399.Google Scholar
5. Figuera, J. de la, Prieto, J. E., Ocal, C. and Miranda, R., Phys. Rev. B 47 (1993) 13043; Surf. Sci. 349 (1996) L139.Google Scholar
6. Rabe, A., Memmel, N., Steltenpohl, A. and Fauster, T., Phys. Rev. Lett. 73 (1994) 2728.Google Scholar
7. Pedersen, M. ø., Bönicke, I. A., Lægsgaard, E., Stensgaard, I., Besenbacher, F., Ruban, A., and Nørskov, J. K., Surf. Sci. 387 (1997) 86.Google Scholar
8.L. Gómez, Slutzky, C., Ferrón, J., Figuera, J. de la, Camarero, J., Parga, A. L. Vázquez de, Miguel, J. J. de, and Miranda, R., Phys. Rev. Lett. 84 (2000) 4397.Google Scholar