Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T02:57:32.713Z Has data issue: false hasContentIssue false

Atomistic modeling of alloy self-growth by vapor deposition: Ni and Al on NiAl(110)

Published online by Cambridge University Press:  17 May 2012

Yong Han
Affiliation:
Institute for Physical Research and Technology, Iowa State University, Ames, Iowa 50011
J. W. Evans
Affiliation:
Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 Ames Laboratory - USDOE, Iowa State University, Ames, Iowa 50011
Get access

Abstract

A multisite lattice-gas (msLG) model with realistic and precise surface diffusion kinetics is applied to provide a reliable description of the initial stages of non-equilibrium self-growth of a NiAl alloy by simultaneous stoichiometric codeposition of Ni and Al on the NiAl(110) surface. Deposition at 300 K produces intermixing but poor alloy ordering. Increasing temperature enhances alloy ordering to near perfection at 600 K, but island shapes remain un-equilibrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hartmann, H., Diemant, T., Bergbreiter, A., Bansmann, J., Hoster, H. E., and Behm, R. J., Surf. Sci. 603, 1439 (2009).Google Scholar
2. Thayer, G. E., Bartelt, N. C., Ozolins, V., Schmid, A. K., Chiang, S., and Hwang, R. Q., Phys. Rev. Lett. 89, 036101 (2002).Google Scholar
3. Kotrla, M., Krug, J., and Šmilauer, P., Phys. Rev. B 62, 2889 (2000).Google Scholar
4. Einax, M., Ziehm, S., Dieterich, W., and Maass, P., Phys. Rev. Lett. 99, 016106 (2007).Google Scholar
5. Smith, J. R. and Zangwill, A., Phys. Rev. Lett. 76, 2097 (1996).Google Scholar
6. Han, Y., Ünal, B., Qin, F., Jing, D., Jenks, C. J., Liu, D.-J., Thiel, P. A., and Evans, J. W., Phys. Rev. Lett. 100, 116105 (2008).Google Scholar
7. Han, Y., Ünal, B., Jing, D., Qin, F., Jenks, C. J., Liu, D.-J., Thiel, P. A., and Evans, J. W., Phys. Rev. B 81, 115462 (2010).Google Scholar
8. Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993).Google Scholar
9. Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).Google Scholar
10. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
11. Han, Y., Jing, D., Ünal, B., Thiel, P.A., and Evans, J.W., Phys. Rev. B 84, 113414 (2011).Google Scholar
12. Duguet, T., Han, Y., Yuen, C., Jing, D., Ünal, B., Evans, J.W., and Thiel, P.A., Proc. Nat. Acad. Sci. 108, 989 (2011).Google Scholar
13. Michely, T. and Krug, J., Islands, Mounds, and Atoms (Springer, Berlin, 2004).Google Scholar
14. Evans, J.W., Thiel, P.A., and Bartelt, M.C., Surf. Sci. Rep. 61, 1 (2006).Google Scholar
15. Jing, D., Han, Y., Ünal, B., Evans, J. W., and Thiel, P. A., MRS Proc. 1318, 73 (2011).Google Scholar
16. Han, Y., Ünal, B., Jing, D., Thiel, P. A., and Evans, J. W., J. Chem. Phys. 135, 084706 (2011). There are typographical errors in Eq. (3) of this article. The correct expression is: Google Scholar
17. Bei, H. and George, E. P., Acta Mater. 53, 69 (2005).Google Scholar