Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T01:01:28.883Z Has data issue: false hasContentIssue false

Atomic-Layer Cleaving and Non-contact Thinning and Thickening for Fabrication of Laminated Electronic and Photonic Materials

Published online by Cambridge University Press:  21 March 2011

Michael I. Current
Affiliation:
Silicon Genesis, Campbell, CA 95008, USA
Shari N. Farrens
Affiliation:
Silicon Genesis, Campbell, CA 95008, USA
Martin Fuerfanger
Affiliation:
Silicon Genesis, Campbell, CA 95008, USA
Sien Kang
Affiliation:
Silicon Genesis, Campbell, CA 95008, USA
Harry R. Kirk
Affiliation:
Silicon Genesis, Campbell, CA 95008, USA
Igor J. Malik
Affiliation:
Silicon Genesis, Campbell, CA 95008, USA
Lucia Feng
Affiliation:
Silicon Genesis, Campbell, CA 95008, USA
Francois J. Henley
Affiliation:
Silicon Genesis, Campbell, CA 95008, USA
Get access

Abstract

An innovative suite of layer transfer technologies, collectively called the NanoCleaveTM Process, includes a non-porous cleave plane utilizing a compressive strain layer, growth of a high purity, crystalline device layer, plasma activation coupled with vacuum bonding, room-temperature cleaving along an atomically flat plane and a variety of post-cleave CVD processes to thicken or thin the device layer to a desired final thickness is described. Applications of this process include fabrication of SOI wafers containing Si and SiGe alloy device layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Current, M.I., Malik, I.J., Fuerfanger, M., Korolik, M., Kang, S., Kirk, H., Fang, M., Farrens, S.N., Henley, F.J., in “Silicon-on-Insulator Technology and Devices X”, eds. Cristoloveanu, S. et al. , Electrochemical Society, Proc. 2001–3 (2001) 7578.Google Scholar
2. Farrens, S. N., Dekker, J.R., Smith, J. K., Roberds, B. E., J. Electrochem. Soc. 142 (11) (1995) 39493955.Google Scholar
3. Langbein, D., J. Adhesion 3 (1972) 213235.Google Scholar
4. Roberts, S.G., in “Properties of Crystalline Silicon”, ed. Hull, R., INSPEC (1999) 144148.Google Scholar
5. Thilderkvist, A-L., Kang, S., Fuerfanger, M., Malik, I.J., 2000 IEEE Inter. SOI Conf., October, 2000, 1213.Google Scholar
6. Current, M.I., Malik, I.J., Bedell, S.W., Kirk, H., Korolik, M., Kang, S., Henley, F.J., in “High Purity Silicon VI”, eds. Claeys, C.L. et al. , Electrochemical Society, Proc. 2000–17 (2000) 516523.Google Scholar
7. Current, M.I., Bedell, S.W., Malik, I. J., Feng, L.M., Henley, F.J., Solid State Technology, (July, 2000), 6677.Google Scholar