Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T09:49:47.405Z Has data issue: false hasContentIssue false

Atomic Structure of Deep Level Defects in Dimethylaluminum Methoxide-Doped GaAs

Published online by Cambridge University Press:  26 February 2011

Y Park
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
M Skowronski
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
Get access

Abstract

GaAs epilayers doped with dimethylaluminum methoxide (DMA1MO), an alkoxide bearing a pre-formed Al-O molecule, have been investigated using local vibrational mode (LVM) absorption and deep level transient spectroscopy measurements. LVM measurements indicated that oxygen and aluminum atoms are incorporated into GaAs layer as a complex and remain bound in the volume of the crystal. Electron traps with activation energies of 0.74 and 0.93 eV below the conduction band are main deep level defects responsible for the electrical and optical properties of the layers. Interpretation of the relationship between trap concentration and growth conditions led to the conclusion that the 0.93 and 0.74 eV traps have the atomic structures in which oxygen atom is bonded to one (AlO) and two aluminum atoms (A12O), respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Goorsky, M. S., Kuech, T.F., Cardone, F., Mooney, P.M., Scilla, G.J., and Potemski, R.M., Appl. Phys. Lett. 58, 1979 (1991).Google Scholar
2. Goorsky, M. S., Kuech, T. F., Mooney, P. M., Cardonne, F., and Potemski, R. M., Mat. Res. Soc. Symp. 204, 177 (1991).Google Scholar
3. Park, Y., Skowronski, M. and Rosseel, T. M., J. Crystal Growth 137, 442 (1994).Google Scholar
4. Park, Y. and Skowronski, M., J. Appl. Phys. 75, 2640 (1994).Google Scholar
5. Huang, J. W. and Kuech, T. F., Appl. Phys. Lett. 65, 604 (1994).Google Scholar
6. Neild, S. T., Skowronski, M. and Lagowski, J., Appl. Phys. Lett. 58, 859 (1991).Google Scholar
7. Kaufmann, U., Klausmann, E., Schneider, J. and Alt, H. C., Phys. Rev. B, 43, 12106 (1991).Google Scholar
8. Huang, J. W. and Keuch, T. F., Mater. Res. Soc. Symp. 325, 305 (1994).Google Scholar
9. Park, Y. and Skowronski, M., J. Appl. Phys. 76, 5813 (1994).Google Scholar
10. Akimoto, K., Kamada, M., Taira, K., Arai, M., and Watanabe, N., J. Appl. Phys. 59, 2833 (1986).Google Scholar
11. Bhattacharya, P. K., Matsumoto, T. and Subramanian, S., J. Cryst. Growth 68, 301 (1984).Google Scholar
12. Bhattacharya, P. K., Subramanian, S. and Ludowise, M. J., J. Appl. Phys. 55, 3664 (1984).Google Scholar
13. Wallis, R. H., Forte-Poisson, M. A. D., Bonnet, M., Beuchet, G. and Duchemin, J. P., Inst. Phys. Conf. Ser. 56, 73 (1981).Google Scholar
14. Schneider, J., Dischler, B., Seelewind, H., Mooney, P.M., Lagowski, J., Matsui, M., Beard, D.R., and Newman, R.C., Appl. Phys. Lett. 54, 1442 (1989).Google Scholar
15. Song, C., Pajot, B. and Gendron, F., J. Appl. Phys. 67, 7307 (1990).Google Scholar
16. Alt, H. C., Appl. Phys. Lett. 55, 2736 (1989).Google Scholar
17. Akkerman, Z. L., Borisowa, L. A., Kravchenko, A. F., Sov. Phys. Semicond. 10, 590 (1976).Google Scholar
18. Lorimor, O. G. and Spitzer, W. G., J. Appl. Phys. 37, 2509 (1966).Google Scholar
19. Skowronski, M., in Deep Centers in Semiconductors. 2nd ed., edited by Pantelides, S. (Gordon and Breach, New York, 1992), p. 379.Google Scholar