Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T04:05:25.328Z Has data issue: false hasContentIssue false

Atomic Scale Simulations of Tensile Failure in Metal Oxides

Published online by Cambridge University Press:  15 February 2011

F. H. Streitz
Affiliation:
Naval Research Laboratory, Washington, DC 20375
J. W. Mintmire
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

We describe atomic-scale simulations of the failure under tensile load of an aluminum-alumina heterostructure, comparing the results with similar simulations of failure in metallic aluminum and the ceramic α-alumina. The simulations were performed using a novel computational method which explicitly includes variable charge transfer between cations and anions in an empirical potential. From our simulations we estimate the theoretical limit of yield stress for the interface to be approximately 2 GPa, at a strain of only a few percent. The theoretical limit for yield stress in α-alumina, for comparison, is about 45 GPa.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Baglin, J. E. E., Mater. Sci. Eng. B 1, 1 (1988).Google Scholar
2. Buckley, D. H., Surface Effects in Adhesion, Friction, Wear and Lubrication (Elsevier, Amsterdam, Netherlands 1981).Google Scholar
3. see, e.g., Surfaces and Interfaces of Ceramic Materials, edited by Dufor, L. C., Monty, C., and Petot-Evans, G. (Kluwer Academic Publishers, Dordrecht, Netherlands 1989).Google Scholar
4. see, e.g., Surface Engineering of Structural Ceramics, J. Am. Ceram. Soc. 76(2), (1992).Google Scholar
5. see, e.g., Science of Alumina, J. Am. Ceram. Soc. 77(2), (1994).Google Scholar
6. Streitz, F. H. and Mintmire, J. W., Phys. Rev. B 50, 11996 (1994).Google Scholar
7. Streitz, F. H. and Mintmire, J. W., Composite Interfaces, in press.Google Scholar
8. Iczkowsky, R. P. and Margrave, J. L., J. Am. Chem. Soc. 83, 3547 (1961).Google Scholar
9. Parr, R. G., Donnelly, R. A., Levy, M. and Palke, W. E. J., J. Chem. Phys. 68, 3801 (1978).Google Scholar
10. Parr, R. G. and Pearson, R. G., J. Am. Chem. Soc. 105, 7512 (1983).Google Scholar
11. Leeuw, S. W. de, Perram, J. W. and Smith, E. R., Proc. R. Soc. Lond. A 373, 27 (1980).Google Scholar
12. Mintmire, J. W., Ph.D. dissertation (1980).Google Scholar
13. Heyes, D. M., Surf. Sci. Lett. 293, L857 (1993).Google Scholar
14. Mortier, W. J., Genechten, K. van and Gasteiger, J., J. Am. Chem. Soc. 107, 829 (1985).Google Scholar
15. Mortier, W. J., Gosh, S. K. and Shankar, S. J. Am. Chem. Soc. 108, 4315 (1986).Google Scholar
16. Rappe, A. K. and Goddard, W. A., J. Chem. Phys. 95, 3358 (1991).Google Scholar
17. Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983), Phys. Rev. B 29, 6443 (1984).Google Scholar
18. Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).Google Scholar
19. Finnis, M. W. and Sinclair, J. E., Phil. Mag. A 50, 45 (1984).Google Scholar
20. Johnson, R. A., Phys. Rev. B 37, 3924 (1988), Phys. Rev. B 39, 12554 (1989).Google Scholar
21. Abell, G. C., Phys. Rev. Lett. 31, 6184 (1985).Google Scholar
22. Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
23. Brenner, D. W., Phys. Rev. B 42, 9485 (1990).Google Scholar
24. Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis (Springer-Verlag, New York 1993).Google Scholar
25. Dennis, J. E. Jr., and Schnabel, R. B., Numerical Methods for Unconstrained Optimizations and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, NJ, 1983).Google Scholar
26. Head, J. D. and Zerner, M. C., Chem. Phys. Lett. 122, 264 (1985).Google Scholar