Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-01T00:50:36.888Z Has data issue: false hasContentIssue false

Atomic Scale Characterization of Supported and Assembled Nanoparticles

Published online by Cambridge University Press:  14 March 2011

B. Pauwels
Affiliation:
EMAT, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium
M. Yandouzi
Affiliation:
EMAT, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium
D. Schryvers
Affiliation:
EMAT, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium
G. Van Tendeloo
Affiliation:
EMAT, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium
G. Verschoren
Affiliation:
Laboratory of Solid State Physics and Magnetism, Catholic University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
P. Lievens
Affiliation:
Laboratory of Solid State Physics and Magnetism, Catholic University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
M. Hou
Affiliation:
Physics of Irradiated Solids-C.P. 234, Free University of Brussels, B-1050 Brussels, Belgium
H. Van Swygenhoven
Affiliation:
Paul Scherrer Institute, Ch-5232 Villigen PSI, Switzerland
Get access

Abstract

Different structural configurations of nanoparticles have been investigated by advanced transmission electron microscopy (TEM) techniques. The cluster-surface interaction of Au clusters, produced in a laser vaporization source and deposited with low energy on MgO cubes, is investigated by high-resolution transmission electron microscopy (HRTEM). A dilation of the Au lattice that perfectly accommodates the misfit with the MgO lattice is measured and modeled with Molecular Dynamics (MD). To study the chemical ordering in bimetallic clusters, Au-Cu alloy clusters with different stoichiometries are produced and deposited in the same way as the Au clusters. Electron diffraction (ED) ring patterns obtained from these alloy clusters lying on amorphous carbon, are indexed as face-centered cubic, which is confirmed by HRTEM. This indicates that clusters of Au-Cu alloys are solid solutions, i.e. no ordering takes place in these clusters. Assembled nanoclusters of Ni3Al, produced by the inert gas condensation (IGC) technique and pressed under high pressure (2 GPa), are investigated by HRTEM. These studies indicate that nanocrystalline Ni3Al consists of small crystallites of random crystallographic orientations separated by grain boundaries, with the presence of several nanoscaled voids. From the selected area electron diffraction (SAED) ring pattern, an incomplete L12 ordering is concluded.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhurkin, E., Hou, M., Swygenhoven, H. Van, Pauwels, B., Yandouzi, M., Schryvers, D., Tendeloo, G. Van, Lievens, P., Verschoren, G., Kuriplach, J., Peteghem, S. Van, Segers, D. and Dauwe, C., MRS fall meeting (2000), Symposium B8.2.Google Scholar
2. Bouwen, W., Thoen, P., Vanhoutte, F., Bouckaert, S., Despa, F., Weidele, H., Silverans, R.E., and Lievens, P., Rev. Sci. Instrum., 71, 5458 (2000).Google Scholar
3. Bouwen, W., Kunnen, E., Temst, K., Bael, M.J. van, Vanhoutte, F., Weidele, H., Lievens, P., and Silverans, R.E., Thin Solid Films, 354, 8792 (1999).Google Scholar
4 Sanders, P. G., Fougere, G. E., Thompson, L.J., Eastman, J. A. and Weertman, J. R., Nanostruct. Mater., 8, 243252 (1997).Google Scholar
5. Rosenauer, A. and Gerthsen, D., Advances in Imaging and Electron Physics, 107, 121230 (1999).Google Scholar
6. Stadelman, P.A., Ultramicroscopy, 21, 131145 (1987).Google Scholar
7. Giorgio, S., Chapon, C., Henry, C.R., and Nihoul, G., Phil. Mag. B, 67, 773785 (1993).Google Scholar
8. Pauwels, B., Tendeloo, G. Van, Bouwen, W., Theil, L. Kuhn, Lievens, P., Lei, H., and Hou, M., Phys. Rev. B, 62, 1038310393 (2000).Google Scholar
9. Rousset, J.L., Cadrot, A.M., Aires, F.J. Cadete Santos, Renouprez, A.J., Mélinon, P., Perez, A., Pellarin, M., Vialle, J.L., and Broyer, M., J. Chem. Phys, 102, 85748585 (1995).Google Scholar
10. Singleton, M. F., Murray, J. and Nash, P., in Binary alloy phase diagrams, edited by Massalski, T. B. (American Society for Metals, 1986) p. 140.Google Scholar
11. Suryanarayana, C., Int. Mat. Rev., 40, 4164 (1995)Google Scholar
12. Yandouzi, M., Schryvers, D., Kuriplach, J., Petegem, S. Van, Segers, D., Morales, A. L., Dauwe, C., Zhurkin, E. E., Hou, M., Swygenhoven, H. Van and Tendeloo, G. Van, to be published.Google Scholar
13. Petegem, S. Van, Segers, D., Dauwe, C., Torre, F. Dalla, Swygenhoven, H. Van, Yandouzi, M., Schryvers, D., Tendeloo, G. Van, Kuriplach, J., Hou, M., Zhurkin, E.E., MRS fall meeting (2000), Symposium B3.9.Google Scholar