Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-07T23:09:54.819Z Has data issue: false hasContentIssue false

Atomic Layer Chemical Vapor Deposition of Hafnium Oxide Using Anhydrous Hafnium Nitrate Precursor

Published online by Cambridge University Press:  01 February 2011

J.F. Conley Jr
Affiliation:
Sharp Labs of America, Camas, Washington.
Y. Ono
Affiliation:
Sharp Labs of America, Camas, Washington.
D.J. Tweet
Affiliation:
Sharp Labs of America, Camas, Washington.
W. Zhuang
Affiliation:
Sharp Labs of America, Camas, Washington.
R. Solanki
Affiliation:
Oregon Graduate Institute, Department of Electrical and Computer Engineering, Beaverton, Oregon.
Get access

Abstract

HfO2 films have been deposited using anhydrous hafnium nitrate (Hf(NO3)4) as a precursor for atomic layer chemical vapor deposition (ALCVD). These films have been characterized using x-ray diffraction, x-ray reflectivity, atomic force microscopy, current vs. voltage, and capacitance vs. voltage measurements. An advantage of this precursor is that it produces smooth and uniform initiation of film deposition on H-terminated silicon surfaces. As deposited films remained amorphous at temperatures below ∼700°C. The effective dielectric constant of the film (neglecting quantum effects) for films less than ∼15 nm thick, was in the range of kfilm ∼ 10-11, while the HfO2 layer value was estimated to be kHfO2 ∼ 12-14. The lower than expected dielectric constant of the film stack is due in part to the presence of an interfacial layer such as HfSiOx. Excess oxygen may play a role in the lower than expected dielectric constant of the HfO2 layer. Breakdown of HfO2 films occurred at ∼5-7 MV/cm. Leakage current was lower than that of SiO2 films of comparable equivalent thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wilk, G.D., Wallace, R.M., and Anthony, J.M., J. Appl. Phys. 5243, 5243 (2001).Google Scholar
2.“Front End Processes,” in International Technology Roadmap for Semiconductors, 2001 Edition, http://public.itrs.net/Files/2001ITRS/Home.htm.Google Scholar
3. Green, M.L., Gusev, E.P., Degraeve, R., and Garfunkel, E.L., J. Appl. Phys. 2057, 2057 (2001).Google Scholar
4. Hubbard, K.J. and Schlom, D.G., J. Mater. Res. 2757, 2757 (1996).Google Scholar
5. Robertson, J., J. Vac. Sci. Tech. B 1785, 1785 (2000).Google Scholar
6. Lee, B.H., Kang, L., Qi, W.J., Nieh, R., Jeon, Y., Onishi, K., and Lee, J.C., Tech. Digest: Inter. Elec. Dev. Meet., p. 133, (1999), Appl. Phys. 1926, 1926 (2000).Google Scholar
7. Ma, T., Campbell, S.A., Smith, R., Hoilien, N., Boyong, H., Gladfelter, W.L., Hobbs, C., Buchanan, D., Taylor, C., Gribelyuk, M., Tiner, M., Coppel, M., and Lee, J.J., IEEE Trans. Elec. Dev. 2348, 2348 (2001).Google Scholar
8. Copel, M., Gribelyuk, M., and Gusev, E., Appl. Phys. Lett. 436, 436 (2000).Google Scholar
9. Perkins, C.M., Triplett, B.B., McIntyre, P.C., Saraswat, K.C., Haukka, S., and Tuominen, M., Appl. Phys. Lett. 2357, 2357 (2001).Google Scholar
10. Smith, R.C., Ma, T., Hoilien, N., Tsung, L.Y., Bevan, M.J., Colombo, L., Roberts, J., Campbell, S.A., and Gladfelter, W.L., Adv. Mater. Opt. and Electron. 105, 105 (2000).Google Scholar
11. Colombo, D.G., Gilmer, D.C., Young, V.G., Campbell, S.A., and Gladfelter, W.L., Chem. Vap. Deposition 220, 220 (1998).Google Scholar
12. Park, J., Park, B. K., Cho, M., Hwang, C. S., Oh, K., Yang, D.Y., J. Electrochem. Soc. 149(1), G89–G94 (2002).Google Scholar
13. Zhu, W., Ma, T.P., Tamagawa, T., Di, Y., Kim, J., Carruthers, R., Gibson, M., and Furukawa, T., IEDM 2001, p. 463.Google Scholar
14. Hobbs, C., Tseng, H., Reid, K., et al., IEDM 2001 Tech. Digest, p. 651.Google Scholar
15. Kim, Y. et al., IEDM 2001 Tech. Digest, p. 455.Google Scholar
16. Conley, J.F. Jr, Ono, Y., Tweet, D.J., Zhuang, W., Gao, W., Kaiser, M.S., and Solanki, R., Electrochem. Soc. Lett. 5, C57–C59 (2000).Google Scholar
17. Gordan, R., Becker, J., Hausmann, D., and Suh, S., Chem. of Mat. 13, 2463–4 (2001).Google Scholar
18. Gusev, E.P., Cartier, E., Copel, M., Gribelyuk, M., Buchanan, D.A., Okorn-Schmidt, H., D'Emic, C., Kozlowski, P. Tuominen, M., Linnermo, M., and Haukka, S., in Proc. of the ECS Meeting, Abstract #578 (March 2001).Google Scholar
19. Ma, Y., Ono, Y., Stecker, L., Evans, D.R., and Hsu, S.T., IEDM Tech. Digest, 149 (1999).Google Scholar
20. Zhang, H. and Solanki, R., J. Electrochem. Soc. 63, 63 (2001).Google Scholar
21. Sayan, S., Garfunkel, E., and Zuzer, S., Appl. Phys. Lett. 81(12), 2135 (2002).Google Scholar
22. Balog, M., Schieber, M., Michman, M., and Patai, S., Thin Sol. Films 247, 247 (1977).Google Scholar
23. Suntola, T., Materials Science Reports 4, 261312 (1989).Google Scholar
24. Ritala, M., Leskela, M., Niinisto, L., Prohaska, T., Friedbacher, G., and Grassbauer, M., Thin Solid Films 1, 1 (1994).Google Scholar
25. Tuominen, M., Kanniainen, T., and Haukka, S., in Electrochemical Society Proceedings Vol. 2000-9, p. 271–82 (2000).Google Scholar
26. Kang, A., Lenahan, P.M., Conley, J.F. Jr, and Solanki, R., submitted to Appl. Phys. Lett.Google Scholar