Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T03:08:52.988Z Has data issue: false hasContentIssue false

Atomic Hydrogen in GaN

Published online by Cambridge University Press:  26 February 2011

Jürg Neugebauer
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304
Chris G. Van de Walle
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304
Get access

Abstract

Based on extensive first-principles total-energy calculations we study the electronic structure, atomic geometry and energetics of atomic hydrogen in cubic GaN. All charge states of hydrogen (H+, H0, H-) are examined. For H- the gallium tetrahedral interstitial site is energetically most stable. All other sites are much higher in energy, indicating a high diffusion barrier for H- in GaN. H+ favors positions on a sphere with a radius of ≈ 1 Å and a nitrogen atom in the center. Among these positions the nitrogen antibonding site is energetically most stable. An unexpectedly large negative-U effect (U = —2.5eV) indicates that H0 is unstable.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
[2] Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys 28, L2112 (1989).Google Scholar
[3] Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
[4] Van Vechten, J.A., Zook, J.D., Hornig, R.D., and Goldenberg, B., Jpn. J. Appl. Phys. 31, 3662 (1992).Google Scholar
[5] Molnar, R.J., Lei, T., and Moustakas, T.D., Proc. Mater, Res. Soc. Symp. 281, 753 (1993).Google Scholar
[6] Lin, M.E., Xue, C., Zhou, G.L., Greene, J.E., and Morkoc, H., Appl. Phys. Lett. 63, 932 (1993).Google Scholar
[7] Brandt, M.S., Ager, J.W. III, Götz, W., Johnson, N.M., Harris, J.S. Jr., Molnar, R.J., and Moustakas, T.D., Phys. Rev. B 49, 14758 (1994).Google Scholar
[8] Neugebauer, J. and Van de Walle, C.G., to be published.Google Scholar
[9] Troullier, N. and Martins, J.L., Phys. Rev. B 43, 1993 (1991).Google Scholar
[10] Stumpf, R. and Scheffler, M., Comp. Phys. Commun. 79, 447 (1994).Google Scholar
[11] Neugebauer, J. and Van de Walle, C.G., Phys. Rev. B 50, 8067 (1994).Google Scholar
[12] Neugebauer, J. and Van de Walle, C.G., in Materials Research Society Symposia Proceedings, edited by Carter, C.H. Jr., Gildenblat, G., Nakamura, S., and Nemanich, R.J. (Materials Research Society, Pittsburgh, Pennsylvania, 1994), Vol. 339.Google Scholar
[13] Monkhorst, H.J. and Pack, J.D., Phys. Rev. B 13, 5188 (1976).Google Scholar
[14] Van de Walle, C.G., Denteneer, P.J.H., Bar-Yam, Y., and Pantelides, S.T., Phys. Rev. B 39, 10791 (1989).Google Scholar
[15] CRC Handbook of Chemistry and Physics, 73 ed., edited by Lide, D. R. (CRC, Boca Raton, FL, 1993).Google Scholar
[16] Pavesi, L. and Gianozzi, P., Phys. Rev. B 46, 4621 (1992).Google Scholar