Published online by Cambridge University Press: 26 February 2011
Based on extensive first-principles total-energy calculations we study the electronic structure, atomic geometry and energetics of atomic hydrogen in cubic GaN. All charge states of hydrogen (H+, H0, H-) are examined. For H- the gallium tetrahedral interstitial site is energetically most stable. All other sites are much higher in energy, indicating a high diffusion barrier for H- in GaN. H+ favors positions on a sphere with a radius of ≈ 1 Å and a nitrogen atom in the center. Among these positions the nitrogen antibonding site is energetically most stable. An unexpectedly large negative-U effect (U = —2.5eV) indicates that H0 is unstable.