Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T18:41:42.384Z Has data issue: false hasContentIssue false

Atomic and electronic structure of superionic solid electrolyte Li10GeP2S12

Published online by Cambridge University Press:  20 July 2012

Ka Xiong*
Affiliation:
Materials Science & Engineering Dept, The University of Texas at Dallas, Richardson, TX 75080, USA
Roberto Longo Pazos
Affiliation:
Materials Science & Engineering Dept, The University of Texas at Dallas, Richardson, TX 75080, USA
Kyeongjae Cho*
Affiliation:
Materials Science & Engineering Dept, The University of Texas at Dallas, Richardson, TX 75080, USA Physics Dept, The University of Texas at Dallas, Richardson, TX 75080, USA
Get access

Abstract

We investigate the electronic structure of interstitial Li and Li vacancy in Li10GeP2S12 by first principles calculations. We find that the Li vacancy and interstitial Li+ ion do not introduce states in the band gap hence they do not deteriorate the electronic properties of Li10GeP2S12. The energy barrier for Li interstitial diffusion in Li10GeP2S12 is estimated to be 1.4 eV, which is much larger than that of the Li vacancy in Li10GeP2S12. This fact suggests that the ion conductivity arises from the migration of Li vacancy.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. and Tarascon, J., Nat. Mater. 11, 19 (2012).Google Scholar
2. Minami, T., Tatsumisago, M., Wakihara, M., Iwakura, C., Kohjiya, S., and Tanaka, I., “Solid state ionics for batteres”, Springer-Verlag, Tokyo (2005).Google Scholar
3. Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A., and Evans, C. D., Solid State Ionics 135, 33 (2000).Google Scholar
4. Bates, J. B., Dudney, N. J., Gruzalski, G. R., Zuhr, R. A., Choudhury, A., Luck, D. F., and Robertson, J. D., Solid State Ionics 5356, 647 (1992).Google Scholar
5. Wang, B., Chakoumakos, B. C., Sales, B. C., Kwak, B. S., Bates, J. B., J. Solid State Chem. 115, 313 (1995).Google Scholar
6. Yu, X., Bates, J. B., Jellison, J. G. E., and Hart, F. X., J. Electrochem. Soc. 144, 524 (1997).Google Scholar
7. Dudney, N. J., Interface 17, 44 (2008).Google Scholar
8. Kamaya, N., Homma, K., Yaakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., and Mitsui, A., Nat. Mater. 10, 682 (2011).Google Scholar
9. Mo, Y., Ong, S. P., and Ceder, G., Chem. Mater. 24, 15 (2012).Google Scholar
10. Adams, S. and Prasada Rao, R., J. Mater. Chem. 22, 7687 (2012).Google Scholar
11. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
12. Mills, G., Jonsson, H., and Schenter, G. K., Surface Science 324, 305 (1995).Google Scholar