Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T21:42:39.407Z Has data issue: false hasContentIssue false

Asymmetry of the latent heat signature in b-axis oriented single crystal Gd5Si2Ge2

Published online by Cambridge University Press:  21 April 2011

K. Morrison
Affiliation:
Blackett Laboratory, Prince Consort Rd, London SW7 2BZ, UK
V.K. Pecharsky
Affiliation:
Ames Laboratory of the U.S. Department of Energy, and Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, 50011-3020, USA
K.A. Gschneidner Jr.
Affiliation:
Ames Laboratory of the U.S. Department of Energy, and Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, 50011-3020, USA
L.F. Cohen
Affiliation:
Blackett Laboratory, Prince Consort Rd, London SW7 2BZ, UK
Get access

Abstract

A 100 micron fragment of a b-axis oriented single crystal Gd5Si2Ge2 has been studied using microcalorimetry, enabling the separate measurement of the heat capacity and the latent heat. The sample was taken from the same crystal previously studied with Hall probe imaging, which showed that the phase transition is seeded by a second phase of Gd5Si1.5Ge1.5 nanoplatelets on the increasing field sweep direction only. The multiple transition features observed in the latent heat signature suggests a nucleation size of approximately 20 μm, consistent with the lengthscale suggested by Hall imaging. The difference in nucleation and growth process with field sweep direction is clearly identified in the latent heat. We show that the latent heat contribution to the entropy change is of the order of 50% of the total entropy change and unlike other systems studied, the transition does not broaden (and the latent heat contribution does not diminish significantly) as magnetic field and temperature are increased within the parameter range explored in these experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pecharsky, V.K. and Gschneidner, K.A. Jr., Phys. Rev. Lett. 78, 4494 (1997)10.1103/PhysRevLett.78.4494Google Scholar
2. Pecharsky, V.K., and Gschneidner, K.A. Jr., Adv. Mater. 13, 683 (2001)10.1002/1521-4095(200105)13:9<683::AID-ADMA683>3.0.CO;2-O3.0.CO;2-O>Google Scholar
3. Morellon, L., Algarabel, P. A., Ibarra, M. R., Blasco, J., García-Landa, B., Arnold, Z., and Albertini, F., Phys. Rev. B 58 R14721 (1998)10.1103/PhysRevB.58.R14721Google Scholar
4. Liu, G. J., Sun, J. R., Lin, J., Xie, Y. W., Zhao, T. Y., Zhang, H. W., and Shen, B. G., Appl. Phys. Lett. 88, 212505 (2006)10.1063/1.2201879Google Scholar
5. Morellon, L., Arnold, Z., Magen, C., Ritter, C., Prokhnenko, O., Skorokhod, Y., Algarabel, P.A., Ibarra, M.R., and Kamarad, J., Phys. Rev. Lett. 93, 137201 (2004)10.1103/PhysRevLett.93.137201Google Scholar
6. Pecharsky, V.K., Gschneidner, K.A. Jr., Mudryk, Ya., Paudyal, D.., J. Magn & Magn. Mater. 321, 3541–3547 (2009)10.1016/j.jmmm.2008.03.013Google Scholar
7. Tang, H., Pecharsky, A.O., Schlagel, D.L., Lograsso, T.A., Pecharsky, V.K., and Gschneidner, K.A. Jr., J. Appl. Phys. 93, 8298 (2003)10.1063/1.1556259Google Scholar
8. Moore, J.D., Morrison, K., Perkins, G.K., Schlagel, D.L., Lograsso, T.A., Gschneidner, K.A. Jr., Pecharsky, V.K., and Cohen, L.F., Adv. Mater. 21, 1–4 (2009)10.1002/adma.200900093Google Scholar
9. Saruyama, Y. J. Therm. Anal. 38, 1827–33 (1992)10.1007/BF01974677Google Scholar
10. Minakov, A.A., Roy, S.B., Bugoslavsky, Y.V., and Cohen, L.F., Rev. Sci. Instrum. 76, 043906 (2005)10.1063/1.1889432Google Scholar
11. Miyoshi, Y., Morrison, K., Moore, J.D., Caplin, A.D., and Cohen, L.F. Rev. Sci. Instrum. 79, 074901 (2008)10.1063/1.2960556Google Scholar
12. Pecharsky, V.K., and Gschneidner, K.A. Jr., J. Appl. Phys. 90, 4614 (2001)10.1063/1.1405836Google Scholar
13. Roy, S.B., Perkins, G.K., Chattopadhyay, M.K., Nigam, A.K., Sokhey, K.J.S., Chaddah, P., Caplin, A.D., and Cohen, L.F., Phys. Rev. Lett. 92, 147203 (2004)10.1103/PhysRevLett.92.147203Google Scholar
14. Moore, J.D., Perkins, G.K., Bugoslavsky, Y., Cohen, L.F., Chattopadhyay, M.K., Roy, S.B., Chaddah, P., Gschneidner, K.A. Jr., and Pecharsky, V.K., Phys. Rev. B 73, 144426 (2006)10.1103/PhysRevB.73.144426Google Scholar
15. Morrison, K., Moore, J.D., Sandeman, K.G., Caplin, A.D., and Cohen, L.F., Phys. Rev. B 79, 134408 (2009)10.1103/PhysRevB.79.134408Google Scholar
16. Perkins, G.K., Moore, J.D., Chattopadhyay, M.K., Roy, S.B., Chaddah, P., Pecharsky, V.K., Gschneidner, K.A. Jr., and Cohen, L.F., J. Phys:. Condens. Matter. 19, 176213 (2007)Google Scholar
17. Pérez-Reche, F.J., Vives, E., Mañosa, Ll., Ràfols, I., Pérez-Magrané, R., and Planes, A., Phys. Rev. Lett. 87, 195701 (2001)10.1103/PhysRevLett.87.195701Google Scholar
18. Pérez-Reche, Francisco-José, Stipcich, Marcelo, Vives, Eduard, Manõsa, Lluís, Planes, Antoni, and Morin, Michel, Phys. Rev. B 69, 064101 (2004)10.1103/PhysRevB.69.064101Google Scholar
19. Pecharsky, A.O., Gschneidner, K.A., and Pecharsky, V.K., J. Magn. & Magn. Mater. 267, 60–68 (2003)10.1016/S0304-8853(03)00305-6Google Scholar