Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T14:00:20.754Z Has data issue: false hasContentIssue false

Artificial Photosynthesis - Use of a Ferroelectric Photocatalyst

Published online by Cambridge University Press:  10 May 2012

Steve Dunn*
Affiliation:
School and Engineering and Materials, Queen Mary University of London, E1 4NS, UK
Matt Stock
Affiliation:
Cranfield University, Cranfield, MK43 0AL
Get access

Abstract

The solid-gas phase photoassisted reduction of carbon dioxide (artificial photosynthesis) was performed using ferroelectric lithium niobate and titanium dioxide as photocatalysts. Illumination with a high pressure mercury lamp and visible sunlight showed lithium niobate achieved unexpectedly high conversion of CO2 to products despite the low levels of band gap light available and outperformed titanium dioxide under the conditions used. The high reaction efficiency of lithium niobate is explained due to its strong remnant polarization (70 μC/cm2) thought to allow longer lifetime of photo induced carriers as well as an alternative reaction pathway.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hashimoto, K., Irie, H. and Fujishima, A. (2005), Jap. J. of App. Phys., Part 1: Regular Papers and Short Notes and Review Papers, vol. 44, no. 12, pp. 82698285.Google Scholar
2. Bolton, J. R. (1996), Solar Energy, vol. 57, no. 1, pp. 3750.Google Scholar
3. Ghirardi, M. L., Dubini, A., Yu, J. and Maness, P. -. (2009), Chem. Soc. Rev., vol. 38, no. 1, pp. 5261.Google Scholar
4. Alstrum-Acevedo, J. H., Brennaman, M. K. and Meyer, T. J. (2005), Inorg. Chem., vol. 44, no. 20, pp. 68026827.Google Scholar
5. Serpone, N., et al. . (1995), J. Photochem. and Photobio., A: Chem., vol. 85, no. 3, pp. 247255.Google Scholar
6. Lévy-Clément, C., et al. . (2005), Ad. Mat., vol. 17, no. 12, pp. 15121515.Google Scholar
7. Giocondi, J. L. and Rohrer, G. S. (2001), J. Phys. Chem. B, vol. 105, no. 35, pp. 82758277.Google Scholar
8. Kalinin, S. V., et al. . (2002), Nano Letters, vol. 2, no. 6, pp. 589593.Google Scholar
9. Dunn, S., Tiwari, D., Jones, P. M. and Gallardo, D. E. (2007), J. Mats Chem., vol. 17, no. 42, pp. 44604463.Google Scholar
10. Dunn, S. and Tiwari, D. (2008), App. Phys. Lett., vol. 93, no. 9.Google Scholar
11. Li, D., et al. . (2008), Nat. Mats., vol. 7, no. 6, pp. 473477.Google Scholar
12. Cabrera, A. L., Vargas, F. and Albers, J. J. (1995), Sur. Sci., vol. 336, no. 3, pp. 280286.Google Scholar
13. Yang, W., Rodriguez, B. J., Gruverman, A. and Nemanich, R. J. (2004), App. Phys. Letts, vol. 85, no. 12, pp. 23162318.Google Scholar
14. Ramos-Moore, E., Baier-Saip, J. A. and Cabrera, A. L. (2006), Sur. Sci., vol. 600, no. 17, pp. 34723476.Google Scholar
15. Yamada, H. (1999), J. Vac. Sci. and Tech. B: Micro. and Nano. Struc., vol. 17, no. 5, pp. 19301934.Google Scholar
16. Ulman, M., et al. . (1982), Int. J Sol. Energy, vol. 1, no. 3, pp. 213222.Google Scholar
17. Thierfelder, C., Sanna, S., Schindlmayr, A. and Schmidt, W. G. (2010), Phys. Stat. Solidi (C), vol. 7, no. 2, pp. 362365.Google Scholar
18. 860 South 19th Street, Richmond, CA 94804, USA, available at: www.mtixtl.com.Google Scholar
19. del Barrio, M. -., Hu, J., Zhou, P. and Cauchon, N. (2006), J. Pharma. and Bio. Anal., vol. 41, no. 3, pp. 738743.Google Scholar
20. Zhao, Z., Fan, J., Xie, M. and Wang, Z. (2009), J. Cleaner Prod., vol. 17, no. 11, pp. 10251029.Google Scholar
21. Harhira, A., Guilbert, L., Bourson, P. and Rinnert, H. (2007), Phys. Stat. Solidi (C) s, vol. 4, no. 3, pp. 926929.Google Scholar