Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:37:25.555Z Has data issue: false hasContentIssue false

Aqueous Mixtures with Nonpolar Gases at High Pressures and Supercritical Temperatures

Published online by Cambridge University Press:  21 February 2011

E.U. Franck*
Affiliation:
Institut für Physikalische Chemie der Universität Karlsruhe, 12 Kaiserstrasse, D 7500 Karlsruhe, w.-Germany
Get access

Abstract

PTx-phase diagrams and critical curves for binary aqueous systems are briefly discussed. New results of the two-phase boundary surface and the critical curve for the water-nitrogen system to 2500 bar and 400°C are presented as isotherms in the Px-plane. A new extended Carnahan-Starling and squarewell type equation permits calculations of spinodal isopleths of the water-methane system and a prediction of the critical curve. - Excess volumes of supercritical benzene-water mixtures are given as functions of composition and pressure. Excess Gibbs energies and activity coefficients are derived. For the same system the static dielectric constant was measured between 300 and 400 °C in the homogeneous supercritical fluid for all concentrations. At 400 °C and 2000 bar the dielectric constant of pure water is 20 and decreases steeply with the addition of benzene. Addition of water to benzene causes at first only a slow increase above the value of 2 (for pure benzene). A short discussion of the description of the dielectric constant of such polar-nonpolar mixtures for wide ranges of density is given. - The solubility of anthracene in high density water to 250 °C was measured spectroscopically. Data are given. The “enhancement factor” is high at low temperature but decreases to unity at 250 °C and a water density of 1 g . cm−3

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Rowlinson, J.S., Swinton, F.L., “Liquids and Liquid Mixtures” 3rd. Ed. Butterworths, London, 1982.Google Scholar
2) Franck, E.U., Fluid Phase Euqilibria 10, 211 (1983).Google Scholar
3) Tödheide, K., Franck, E.U., Z. Physikal. Chemie N.F., 37, 388 (1963).CrossRefGoogle Scholar
4) Seward, T.M., Franck, E.U., Ber. Bunsenges. Physikal.Chemie, 85, 2 (1981).Google Scholar
5) Prokhorov, V.M., Tsiklis, D.S., Russian J. of Phys. Chem. 44, 2069 (1970).Google Scholar
6) Japas, M.L., Franck, E.U., to be published in Ber. Bunsenges. Physikal. ChemieGoogle Scholar
7) See special issue “Supercritical Fluids” Ladner, W.R., ed., Fluid Phase Equilibria 10, No. 2 – 3, 135358 (1983).Google Scholar
8) Deiters, U.K., Fluid Phase Equilibria, 10, 173 (1983).Google Scholar
9) Brunner, G. Peter, S., German Chem. Engineering 5, 181 (1982).Google Scholar
10) Trappeniers, N.J., Schouten, J.A., Ten Seldam, C.A. Chem. Phys. Lett. 5, 541, (1970).Google Scholar
11) Kleintjens, L.A., Konigsveld, R., Sep. Sci. and Technol. 17, 215 (1982). See also ref. [7].CrossRefGoogle Scholar
12) Christoforakos, M., Franck, E.U., To be published in Ber. Bunsenges. Physikal. ChemieGoogle Scholar
13) Welsch, H., “Die Systeme Xenon-Wasser und Methan-Wasser bei hohen Drücken und Temperaturen”, Dissertation, Institut für Physikalische Chemie, Universität Karlsruhe, 1973.Google Scholar
14) Faramarzi, M.A.S.G., “PVT-Daten und Excess-Funktionen für Wasser-Benzol-Mischungen bis 400°C und 4 kbar”, Dissertation, Institut für Physikalische Chemie, Universität Karlsruhe, 1982.Google Scholar
15) Prausnitz, J.M.: “Molecular Thermodynamics of Fluid Phase Equilibria”, Prentice Hall, Englewood Cliffs, N.J., USA, (1969).Google Scholar
16) Deul, R., Franck, E.U., To be published in Ber. Bunsenges. Physikal. Chemie, R. Deul: “Die statische Dielektrizitätskonstante von Wasser-Benzolmischungen bis 400 °C und 2500 bar”. Dissertation.Institut för Physikalische Chemie, Universität Karlsruhe, 1983.Google Scholar
17) Debye, P. “Polare Molekeln” Hirzei, S., Leipzig, (1929).Google Scholar
Hasted, J.B., “Aqueous Dielectrics” Chapman and Hall, London, (1973).Google Scholar
18) Fuoss, R.M., Kirkwood, J. C., J. Amer. Chem. Soc., 63, 385 (1941).CrossRefGoogle Scholar
Oster, G., J. Amer. Chem. Soc., 68, 2036 (1946).Google Scholar
19) Böttcher, C.J.F., “Theory of Electric Polarization”, Elsevier, Amsterdam, 1973.Google Scholar
20) Looyenga, H., Physica, 31, 401 (1965).CrossRefGoogle Scholar
21) Rößling, G.L., Franck, E.U., Ber. Bunsenges. Physikal. Chemie, in print, 87 (1983).Google Scholar
22) Hilbert, R., Tödheide, K., Franck, E.U., Ber. Bunsenges. Physikal. Chemie, 85, 636 (1981).Google Scholar