Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T01:57:21.423Z Has data issue: false hasContentIssue false

Applications of Energy Beams in Material and Device Processing

Published online by Cambridge University Press:  22 February 2011

G.J. Galvin
Affiliation:
Dept. of Materials Science and Engineering Cornell University, Ithaca, New York 14853
L.S. Hung
Affiliation:
Dept. of Materials Science and Engineering Cornell University, Ithaca, New York 14853
J.W. Mayer
Affiliation:
Dept. of Materials Science and Engineering Cornell University, Ithaca, New York 14853
M. Nastasi
Affiliation:
Dept. of Materials Science and Engineering Cornell University, Ithaca, New York 14853
Get access

Abstract

Energetic ion beams used outside the traditional role of ion implantation are considered for semiconductor applications involving interface modification for self-aligned silicide contacts, composition modification for formation of buried oxide layers in Si on insulator structures and reduced disorder in high energy ion beam annealing for buried collectors in transistor fabrication. In metals, aside from their use in modification of the composition of near surface regions, energetic ion beams are being investigated for structural modification in crystalline to amorphous transitions. Pulsed beams of photons and electrons are used as directed energy sources in rapid solidification. Here, we consider the role of temperature gradients and impurities in epitaxial growth of silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Laser-Solid Interactions and Laser Processing - 1978, Ferris, S.D., Leamy, H.J., and Poate, J.M., eds. (American Institute of Physics, New York, 1979).Google Scholar
2.Laser and Electron Beam Processing of Materials, White, C.W. and Peercy, P.S., eds. (Academic Press, New York, 1980).Google Scholar
3.Ion Implantation Metallurgy, Preece, C.M. and Kirvonen, J.K., eds. (The Metallurgical Society of AIME, New York, 1980).Google Scholar
4.Ion Beam Modification of Materials, 1980, Benenson, R.E., Kaufmann, E.N., Miller, G.L. and Scholz, W.W., eds. (North-Holland Publishing Co., Amsterdam, 1981) andGoogle Scholar
4a. Nucl. Instr. and Meth. 182/183 (1981).Google Scholar
5.Ion Beam Modification of Materials, 1982, Biasse, B., Destefanis, G. and Gailliard, J.P., eds. (North-Holland Publishing Co., Amsterdam, 1983),Google Scholar
5a. and Nucl. Instr. and Meth. 209/210 (1983).Google Scholar
6.Surface Modification and Alloying, Poate, J.M., Foti, G. and Jacobson, D.C., eds. (Plenum Press, New York, 1983).Google Scholar
7. Ion Implantation, Hirvonen, J.K., ed., Vol. 18 in Treatise on Materials Science and Technology (Academic Press, New York, 1980).Google Scholar
8.Laser Annealing of Semiconductors, Poate, J.M. and Mayer, J.W., eds. (Academic Press, New York, 1982).Google Scholar
9.Ghate, P.B., Blair, J.C. and Fuller, C., Thin Solid Films 45, 69 (1977).Google Scholar
10.Hung, L.S., Mayer, J.W., Zhang, M. and Wolf, E.D., Appl. Phys. Lett. (to be published, 1983).Google Scholar
11.Tsaur, B.Y. and Hung, L.S., Appl. Phys. Lett. 37, 922 (1980).Google Scholar
12.Chiang, S.W., Chow, T.P., Riehl, R.F. and Wang, K.L., J. Appl. Phys. 52, 4027 (1981).Google Scholar
13.Nagasawa, E., Okabayashi, H. and Morimoto, M., Japanese J. Appl. Phys. 22, L57 (1983).Google Scholar
14.Okabayashi, H., Nagasawa, E. and Morimoto, M., International Electron Devices Meeting, IEDM82, p. 556.Google Scholar
15.Liu, B.-X., Johnson, W.L., Nicolet, M.-A. and Lau, S.S., in Ref. 5, p. 229.Google Scholar
16.Hung, L.S., Nastasi, M., Gyulai, J. and Mayer, J.W., Appl. Phys. Lett. 42, 672 (1983).Google Scholar
17.Nastasi, M., Hung, L.S. and Mayer, J.W., Appl. Phys. Lett. 43, 831 (1983).Google Scholar
18.Metastable Materials Formation by Ion Implantation, Picraux, S.T. and Choyke, W.J., (North-Holland, New York, 1982).Google Scholar
18a. Volume 7 in MRS symposia proceedings.Google Scholar
19.Pinizzotto, R.F., Vaandrager, B.L. and Lam, H.W., in Ref. 18, p. 401.Google Scholar
20.Maeyama, S. and Kajiyama, K., Japanese J. Appl. Phys. 21, 744 (1983).Google Scholar
21.Nakashima, S. and Ohwada, K., Japanese J. Appl. Phys. 22, 1119 (1983).Google Scholar
22.Kajiyama, K. (private communication).Google Scholar
23.Golecki, I., Chapman, G.E., Lau, S.S., Tsaur, B.Y. and Mayer, J.W., Phys. Lett. 71A, 267 (1979).Google Scholar
24.Svensson, B., Linnros, J. and Holmen, G., in Ref. 5, p. 755.Google Scholar
25.Chen, L.J., Wu, Y.J., Yang, Y.C., Hsieh, K.P., Lin, M.S. and Huang, R.S., J. Appl. Phys. 52, 3304 (1981).Google Scholar
26.Nakata, J., Takahashi, M., Kajiyama, K., Japanese J. Appl. Phys. 20, 2211 (1981).Google Scholar
27.Nakata, J. and Kajiyama, K., Appl. Phys. Lett. 40, 686 (1982).Google Scholar
28.Takahashi, M., Konaka, S. and Kajiyama, K., J. Appl. Phys. 54, 6041 (1983).Google Scholar
29.Galvin, G.J., Thompson, M.O., Mayer, J.W., Peercy, P.S., Hammond, R.B. and Paulter, N., Phys. Rev. B27, 1079 (1983).Google Scholar
30.Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S. and Hammond, R.B., Appl. Phys. Lett. 42, 445 (1983).Google Scholar