Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T16:48:00.854Z Has data issue: false hasContentIssue false

Application of Gd and Pd nanoparticles in a ‘new generation’ switchable mirror

Published online by Cambridge University Press:  01 February 2011

I. Aruna
Affiliation:
[email protected], Indian Institute of Technology Delhi, Physics, India
Bodh Raj Mehta
Affiliation:
[email protected], Indian Institute of Technology Delhi, Physics, India
Lalit Kumar Malhotra
Affiliation:
[email protected], Indian Institute of Technology Delhi, Physics, India
Get access

Abstract

‘Nanoparticle route’ has been utilized to fabricate a ‘new generation’ of switchable mirrors in which the switching properties can be tuned by controlling the nanoparticle size in the underlying Gd layer or Pd over layer. Better color neutrality, faster response time, improved optical contrast, and an enhanced stability has been observed in Gd nanoparticle layer as a direct consequence of the size-induced blue shift in the optical band gap and enhanced surface area. The improvements in optical and electrical switching characteristics are directly related to the large change in H concentration during loading-deloading cycles in Gd nanoparticle layers. It has also been observed that a uniformly deposited Pd nanoparticle over layer also plays a crucial role for improving hydrogen recovery time.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huiberts, J. H., Griessen, R., Rector, J. H., Wijngaarden, R. J., Dekker, J. P., de Groot, D. G. and Koeman, N. J., Nature (London), 380, 231, (1996).Google Scholar
2. Kremers, M., Koeman, N. J., Griessen, R., Notten, P. H. L., Tolboom, R., Kelly, P. J. and Duine, P.A., Phys. Rev. B, 57, 4943, (1998).Google Scholar
3. Lee, M. W. and Lin, C.H., J. Appl. Phys., 87, 7798, (2000).Google Scholar
4. van der Sluis, P., Ouwerkerk, M., and Duine, P. A., Appl. Phys. Lett., 70, 3356, (1997).Google Scholar
5. van der Sluis, P., Appl. Phys. Lett., 73, 1826, (1998).Google Scholar
6. Ouwerkerk, M., Solid State Ionics, 113–115, 431, (1998).Google Scholar
7. Lippens, P. E. and Lannoo, M., Phys. Rev. B, 39, 10935, (1989).Google Scholar
8. Alivisatos, A. P., Science, 271, 933, (1996).Google Scholar
9. Aruna, I., Mehta, B. R., Malhotra, L. K. and Shivaprasad, S. M., Adv. Mater. 16, 169, (2004).Google Scholar
10. Aruna, I., Mehta, B. R., Malhotra, L. K. and Shivaprasad, S. M., Adv. Func. Mater., 15, 131, (2005).Google Scholar
11. Aruna, I., Mehta, B. R. and Malhotra, L. K., Appl. Phys. Lett., 87, 103101 2005.Google Scholar
12. Aruna, I., Mehta, B. R., Malhotra, L. K., Khan, S. A. and Avasthi, D. K., 2005, J. Nanosci. Nanotech., 5, 1728, (2005).Google Scholar
13. Borgschulte, A., Rode, M., Jacob, A. and Schoenes, J., J. Appl. Phys., 90, 1147, (2001).Google Scholar