Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T07:12:14.407Z Has data issue: false hasContentIssue false

Antitumoral drug loaded in TEOS nanoparticles

Published online by Cambridge University Press:  20 December 2012

Ana Paula V. Araújo
Affiliation:
University of Brasília - Faculdade de Ceilândia (UnB-FCE), Brasília, DF 7220-140, Brasil
Claure N. Lunardi
Affiliation:
University of Brasília - Faculdade de Ceilândia (UnB-FCE), Brasília, DF 7220-140, Brasil
Anderson J. Gomes
Affiliation:
University of Brasília - Faculdade de Ceilândia (UnB-FCE), Brasília, DF 7220-140, Brasil
Get access

Abstract

Methotrexate (MTX), is a potent immunomodulating drug and widely used in the treatment of cancer, psoriasis and others disease. Despite its efficacy, the use of MTX is greatly limited due to its toxicity. To solve this problem, we prepared nanoparticles of tetraethyl orthosilicate (NP-TEOS) containing the compound methotrexate (MTX), by the sol-gel method. This drug delivery system (DDS) showed a loading efficiency of 39.7%. Size distribution studies were performed with dynamic light scattering and scanning electron microscopy revealing that these particles were spherical in shape, with a mean diameter between 140-430 nm and a low polydispersity (0.12 – 0.26). Also the particles displayed a low tendency toward aggregation which was confirmed by the low zeta potential -61.4 mV. Profile release showed a slow release loaded with MTX (PBS buffer pH = 7.4). The slow release can be attributed to the low porosity of the NP-TEOS and the extremely low diffusivity of MTX in aqueous media. B16-F10 cells were used to assay the toxicity and uptake of NP-TEOS showing to be nontoxic without MTX making a good candidate for DDS.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barbe, C., Bartlett, J., Kong, L. G., Finnie, K., Lin, H. Q., Larkin, M., Calleja, S., Bush, A., and Calleja, G., Advanced Materials, 16, 1959 (2004).CrossRefGoogle Scholar
Du, L., Song, H. Y., and Liao, S. J., Microporous and Mesoporous Materials, 147, 200 (2012).CrossRefGoogle Scholar
Bitar, A., Ahmad, N. M., Fessi, H., and Elaissari, A., Drug Discovery Today, 17, 1147 (2012).CrossRefGoogle Scholar
Lee, J. E., Lee, D. J., Lee, N., Kim, B. H., Choi, S. H., and Hyeon, T., Journal of Materials Chemistry, 21, 16869 (2011).CrossRefGoogle Scholar
Kenzaoui, B. H., Bernasconi, C. C., Guney-Ayra, S., and Juillerat-Jeanneret, L., Biochemical Journal, 441, 813 (2012).Google Scholar
Zhai, W. Y., He, C. L., Wu, L., Zhou, Y., Chen, H. R., Chang, J., and Zhang, H. F., Journal of Biomedical Materials Research Part B-Applied Biomaterials, 100B, 1397 (2012).CrossRefGoogle Scholar
DeMuth, P., Hurley, M., Wu, C. W., Galanie, S., Zachariah, M. R., and DeShong, P., Microporous and Mesoporous Materials, 141, 128 (2011).CrossRefGoogle Scholar
Sekine, I., Fukuda, H., Kunitoh, H., and Saijo, N., Japanese Journal of Clinical Oncology, 28, 463 (1998).CrossRefGoogle Scholar
Gao, K. P. and Jiang, X. G., International Journal of Pharmaceutics, 310, 213 (2006).CrossRefGoogle Scholar
Seo, D. H., Jeong, Y. I., Kim, D. G., Jang, M. J., Jang, M. K., and Nah, J. W., Colloids and Surfaces B-Biointerfaces, 69, 157 (2009).CrossRefGoogle Scholar
Mashhadi, M. A., Iranian Red Crescent Medical Journal, 10, 75 (2008).Google Scholar
Tang, W., Xu, H., Kopelman, R., and Philbert, M. A., Photochemistry and Photobiology, 81, 242 (2005).CrossRefGoogle Scholar
Diab, R., Jaafar-Maalej, C., Fessi, H., and Maincent, P., Aaps Journal, 14, 688 (2012).CrossRefGoogle Scholar
Ivanov, S., Zhuravsky, S., Yukina, G., Tomson, V., Korolev, D., and Galagudza, M., Materials, 5, 1873 (2012).CrossRefGoogle Scholar
Yildirimer, L., Thanh, N. T. K., Loizidou, M., and Seifalian, A. M., Nano Today, 6, 585 (2011).CrossRefGoogle Scholar
Albarran, L., Lopez, T., Quintana, P., and Chagoya, V., Colloids and Surfaces A-Physicochemical and Engineering Aspects, 384, 131 (2011).Google Scholar
Andhariya, N., Chudasama, B., Mehta, R. V., and Upadhyay, R. V., Journal of Nanoparticle Research, 13, 3619 (2011).CrossRefGoogle Scholar
Gomes, A. J., Lunardi, L. O., Caetano, F. H., Machado, A. E. H., Oliveira-Campos, A. M. F., Bendhack, L. M., and Lunardi, C. N., Journal of Applied Polymer Science, 121, 1348 (2011).CrossRefGoogle Scholar
Kumar, R., Roy, I., Ohulchanskky, T. Y., Vathy, L. A., Bergey, E. J., Sajjad, M., and Prasad, P. N., Acs Nano, 4, 699 (2010).CrossRefGoogle Scholar
Gomes, A. J., Lunardi, C. N., and Tedesco, A. C., Photomedicine and Laser Surgery, 25, 428 (2007).CrossRefGoogle Scholar
Gomes, A. J., Lunardi, C. N., Lunardi, L. O., Pitol, D. L., and Machado, A. E. H., Micron, 39, 40 (2008).CrossRefGoogle Scholar
Lorenz, M. R., Holzapfel, V., Musyanovych, A., Nothelfer, K., Walther, P., Frank, H., Landfester, K., Schrezenmeier, H., and Mailander, V., Biomaterials, 27, 2820 (2006).CrossRefGoogle Scholar
Gomes, A. D., Lunardi, C. N., Caetano, F. H., Lunardi, L. O., and Machado, A. E. D., Microscopy and Microanalysis, 12, 399 (2006).CrossRefGoogle Scholar
Lee, C. H., Lo, L. W., Mou, C. Y., and Yang, C. S., Advanced Functional Materials, 18, 3283 (2008).CrossRefGoogle Scholar