Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T14:31:30.961Z Has data issue: false hasContentIssue false

Antiferroelectric Liquid Crystals from Achiral Molecules And A Liquid Conglomerate

Published online by Cambridge University Press:  10 February 2011

David M. Walba
Affiliation:
Department of Chemistry, Campus Box 215, University of Colorado, Boulder, CO 80309
Eva Körblova
Affiliation:
Department of Chemistry, Campus Box 215, University of Colorado, Boulder, CO 80309
Renfan Shao
Affiliation:
Department of Physics, Campus Box 390, and the Ferroelectric Liquid Crystal Materials Research Center, University of Colorado, Boulder, CO 80309
Joseph E. Maclennan
Affiliation:
Department of Physics, Campus Box 390, and the Ferroelectric Liquid Crystal Materials Research Center, University of Colorado, Boulder, CO 80309
Darren R. Link
Affiliation:
Department of Physics, Campus Box 390, and the Ferroelectric Liquid Crystal Materials Research Center, University of Colorado, Boulder, CO 80309
Noel A. Clark
Affiliation:
Department of Physics, Campus Box 390, and the Ferroelectric Liquid Crystal Materials Research Center, University of Colorado, Boulder, CO 80309
Get access

Abstract

Until recently, it was an empirical fact that creation of a chiral liquid crystal phase required enantiomerically enriched molecules. In addition, to date known ferroelectric and antiferroelectric smectics have also been composed of enantiomerically enriched molecules. Herein are described the first examples of the formation of chiral and antiferroelectric supermolecular liquid crystalline structures from achiral molecules. In one case (apparently metastable) the liquid crystal structure is macroscopically chiral, with samples composed of heterochiral macroscopic domains: a liquid conglomerate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pasteur, L., Acad, C.R.. Sci. Paris, 26, 535539 (1848).Google Scholar
2 Walba, D. M., Clark, N. A., Razavi, H. A., Eidman, K. F., Haltiwanger, R. C. and Parmar, D. S., “A Novel Application of the Molecular Recognition Paradigm: Design of Ferroelectric Liquid Crystals,” Liquid Crystal Chemistry, Physics, and Applications, Doane, J. W. and Yaniv, Z., Editor, Proc. SPIE 1080, 115122 (1989).Google Scholar
3 The space group of the crystal structure shown in Figure 1 is monoclinic, Pn, which is “polar” in crystallography language. This can be “net polar,” meaning symmetry able to support a macroscopic dipole moment, or not, due to an unfortunate use of the term in crystallography. In liquid crystals it is common to describe the symmetry of a system by 1) Finding all possible distinct singular points in the structure and 2) Listing all symmetry operations about these singular points. The point group containing all these operations describes the symmetry even if no one singular point contains all of them. For this crystal structure there is a singular point with a C2 axis in the “middle” of the layers, and a singular point with a mirror plane in the layer interfaces, with the mirror parallel to the C2 axis. The symmetry is effectively C2v, achiral and net polar.Google Scholar
4 Weis, R. M., McConnell, H. M., Nature 310,4749 (1984).Google Scholar
5 (a) Nassoy, P., Goldmann, M. and Rondelez, F., Phys. Rev. Lett., 75, 457 (1995).(b) I. Weissbuch, M. Lahav and L. Leiserowitz, J. Am. Chem. Soc., 119, 933 (1997).Google Scholar
6 Smith, D. P. E., J. Vac. Sci. Technol. B 9, 11191125(1991).Google Scholar
7 (a) Stevens, F., Dyer, D. J. and Walba, D. M., Angew. Chem., Int. Ed. Engl., 35, 900901 (1996). (b) D. M. Walba, F. Stevens, N. A. Clark and D. C. Parks, Acc. Chem. Res., 29, 591-597 (1996).Google Scholar
8 Fontes, E., Heiney, P. A. and de, W. H. Jeu, Phys. Rev. Lett., 61, 12021205 (1988).Google Scholar
9 DeRossi, U., DAhne, S., Meskers, S. C. J. and M, H. P. J.. Dekkers, Angew. Chem. Int. Ed. Engl., 35, 760763 (1996).Google Scholar
10 Link, D. R., Natale, G., Shao, R., Maclennan, J. E., Clark, N. A., Korblova, E. and Walba, D. M., Science, 278, 19241927 (1997).Google Scholar
11 Chandani, A. D. L., Gorecka, E., Ouchi, Y., Takezoe, H. and Fukuda, A., Jpn. J. Appl. Phys., 28, L 1265–L 1268 (1989).Google Scholar
12 Cladis, P. E. and Brand, H. R., Lig. Cryst., 14, 13271349 (1993).Google Scholar
13 Bustamante, E. A. S., Yablonskii, S. V., Ostrovskii, B. I., Beresnev, L. A., Blinov, L. M. and Haase, W., Liq. Cryst., 21,829839 (1996).Google Scholar
14 Unpublished results from these laboratories.Google Scholar
15 Niori, T., Sekine, T., Watanabe, J., Furukawa, T. and Takezoe, H., J. Mater. Chem., 6, 12311233 (1996).Google Scholar
16 Akutagawa, T., Matsunaga, Y. and Yashuhara, K., Liq. Cryst., 17,659666 (1994).Google Scholar
17 Weissflog, W., Lischka, C., Bennié, I., Scharf, T., Pelzl, G., Diele, S. and Kruth, H., Proc. SPIE, Liquid Crystals: Chemistry and Structure, 3319, 14 (1997).Google Scholar
18 Heppke, G. and Moro, D., Science, 279, 18721873 (1998).Google Scholar
19 Osipov, M. A. and Pikin, S. A., Mol. Cryst. Liq. Cryst., 103, 5775 (1983).Google Scholar
20 Macdonald, R., Kentischer, F., Warnick, P. and Heppke, G., Phys. Rev. Lett., 81, 44084411 (1998).Google Scholar