Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T13:58:07.702Z Has data issue: false hasContentIssue false

Anodization of Sputtered Titanium Films

Published online by Cambridge University Press:  01 February 2011

Deepak Dhawan
Affiliation:
[email protected], RMIT University, Sensor Technology Laboratory, School of Electrical and Computer Engineering, Swanston Street,, Melbourne, 3001, Australia
Suresh K. Bhargava
Affiliation:
[email protected], RMIT University, School of Applied Sciences, Latrobe Street,, Melbourne, 3001, Australia
Wojtek Wlodarski
Affiliation:
[email protected], RMIT University, Sensor Technology Laboratory, School of Electrical and Computer Engineering, Swanston Street,, Melbourne, 3001, Australia
Kourosh Kalantar-zadeh
Affiliation:
[email protected], RMIT, DE, United States
Get access

Abstract

Nanoporous Ti (and TiOx) has been formed by anodization of RF sputtered titanium thin films. A solution of 1M (NH4)2SO4 (ammonium sulphate) electrolytes containing 0.5wt% (NH4)F (ammonium fluoride) was used in the anodization process. Different nano and micro structures were obtained. Voltage in a rage of 2 to 10V was employed in the process. It was observed that the magnitude of applied voltage have a significant impact in the formation of different surface morphologies with various nano/micro structures. The anodized titanium thin films were characterised using scanning electron microscopy and X-ray diffraction techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Masuda, H., Ohya, M., Asoh, H., and Nishio, K., Jpn. J. Appl. Phys. 40, L1217 (2001).Google Scholar
2. Wehrspohn, R. B. and Schilling, J., MRS Bull. 26, 623 (2001).Google Scholar
3. Nielsch, K., Wehrspohn, R. B., Barthel, J., J, K., Gosele, U., Fischer, S. F., and Kronmuller, H., Appl. Phy. Lett. 79, 1360 (2001).Google Scholar
4. Roxlo, B., Deckman, H. W., Gland, J., Cameron, S. D., and Clanelli, R., in Science 235 1629 (1987).Google Scholar
5. Douglas, K., Devaud, G., and Clark, N. A., Science 257, 642 (1992).Google Scholar
6. Possin, G. E., Rev. Sci. Instrum., 41, 772 (1970).Google Scholar
7. Williams, W. D. and Giordano, N., Review of Scientific Instruments 55, 410 (1984).Google Scholar
8. Huber, C. A., Huber, T. E., Sadoqi, M., Lubin, J. A., Manalis, S., and Prater, C. B., Science 263 1757 (1994).Google Scholar
9. Wu, Chun-Guey and Bein, Thomas, Science 264, 1757 (1994).Google Scholar
10. Varghese, O. K., Gong, D., Ong, K. G., and Grimes, C. A., Sens. Actuators B 93, 338 (2003).Google Scholar
11. Varghese, O. K., Gong, D., Paulose, M., Ong, K. G., Dicckey, E. C., and Grimes, C. A., Adv. Matter 15, 624 (2003).Google Scholar
12. Wang, R., Hashimoto, K., and Fujishima, A., Nature 388, 431 (1997).Google Scholar
13. Clarke, J., Hill, R., and Roberts, D. R., J. Chem. Technol. Biotechnology 68, 397 (1997).Google Scholar
14. Khan, S. U. M., Al-Shahry, M., and Ingler, W. B., Science 297, 2243 (2002).Google Scholar
15. O'Regan, B., and Gratzel, M., Nature 353, 737 (1991).Google Scholar
16. Grant, C. D., Schwartzberg, A. M., Smestad, G. P., Kowalik, J., Tolbert, L. M., and Zhang, J. Z., J. Electroanal. Chem. 522, 40 (2002).Google Scholar
17. Yu, X., Li, Y., Ge, W., Yang, Q., Zhu, N., and Kalantar-zadeh, K., Nanotechnology 17, 808 (2006).Google Scholar