Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T03:39:43.246Z Has data issue: false hasContentIssue false

Annealing Behavior of The Photoluminescence Lines in CdTe and Znx Cd1−x Te Single Crystals

Published online by Cambridge University Press:  21 February 2011

J. Gonzalez-Hernandez
Affiliation:
Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN. Apdo. Postal 14-740, 07000 México, D. F
A. Reyes-Mena
Affiliation:
Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN. Apdo. Postal 14-740, 07000 México, D. F
Elias Lopez-Cruz
Affiliation:
Departamento de Física del Instituto de Ciencias, Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla 72570, Pue. México
D.D. Allred
Affiliation:
Physics and Astronomy Department, Brigham Young University, Provo, UT
Worth P. Allred
Affiliation:
Galtech Semiconductor Materials Corp., Mt. Pleasent, UT
Get access

Abstract

The main lines in the photoluminescence spectra of Zn1Cd1−xTe single crystals grown by a modified Bridgman method in the compositional range of 0 ≤ X ≤ 0.25 have been identified. All crystals show only near-band-edge emission. To assist in the identification, various samples with different compositions were annealed under a Cd atmosphere. In the pure crystals, the prominent (A°,X) bound exciton line, as well as the doublet at longer wavelengths, disappear after the annealing. In contrast, the treatments do not change significantly the PL spectra of the mixed crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zanio, K., in Semiconductors and Semimetals, edited Willardson, R.K. and Beer, A.C. (Academic, N.Y. 1978), Vol.13.Google Scholar
2. Pautrat, J.L., Francou, J.M., Magnea, N., Molva, E. and Saminadayar, K., J. of Cryst. Growth, 72,194(1985).Google Scholar
3. Giles-Taylor, N.C., Bicknell, R.N., Blanks, D.K., Myers, T.H. and Schetzina, J.F., J. Vac. Sci. Technol. A3,76(1985).Google Scholar
4. Laurenti, J.P., Bastide, G., Rouzeyre, M. and Triboulet, R., Sol. State Comm., 67,1127(1988).Google Scholar
5. Seto, S., Tanaka, A., Masa, Y., Dairaku, S. and Kawashima, M., Appl. Phys. Lett., 53,1524(1989).Google Scholar
6. Olego, D.J., Faurie, J.P., Sivanathan, S. and Raccah, P.M., Appl. Phys. Lett., 47,1172(1985).Google Scholar
7. Cohen, E., Street, R.A. and Muranevich, A., Phys, Rev. B28,7115(1983)Google Scholar
8. Dinan, J.H. and Qadri, S.B., J. Vac. Sci. Technol. A3,851(1985)Google Scholar
9. Pautrat, J.L., Francou, J.M., Magnea, N., Molva, E. and Saminadayar, K., J, of Cryst. Growth, 72,194(1985).Google Scholar
10. Babentsov, V.N., Gorban, S.I., Salkov, E.A. and Torbaev, N.I., Sov. Phys. Semicond., 21,1043(1987)Google Scholar
11. González-Hernández, J., López-Cruz, E., Allred, D.D. and Allred, W.P., submitted to J. of Vac. Sci. and Technol. (1989).Google Scholar
12. Simmonds, P.A., Stradling, R.A., Birch, J.R. and Bradley, C.C., Phys, Status Solidi (b) 64,195(1974).Google Scholar
13. Figueroa, J.M., Sánchez-Sinencio, F., Mendoza-Alvarez, J.G., Zelaya, O., Vázquez-López, C. and Helman, J.S., J. Appl. Phys. 60,452(1986).Google Scholar
14. Halsted, R.E. and Aven, M., Phys. Rev. Lett., 14,64(1965).Google Scholar
15. Mikkelsen, C. and Boyce, J.B., Phys. Rev. Lett., 49,1412(1982).Google Scholar
16. Bell, S.L. and Sen, S., J. Vac. Sci. Technol., A3,112(1985).Google Scholar
17. Sher, A., Chen, A.B., Spicer, W.E. and Shih, C.K., J. Vac. Sci. Technol., A3, 105(1985).Google Scholar