Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-03T09:02:28.579Z Has data issue: false hasContentIssue false

Anisotropic Transport in Microcrystalline P-I-N Devices

Published online by Cambridge University Press:  15 February 2011

M. Vieira
Affiliation:
FCT/UNL, Monte da Caparica, Portugal
A. Fantoni
Affiliation:
Electronics and Communications Department, ISEL, Lisboa, Portugal
M. Fernandes
Affiliation:
Electronics and Communications Department, ISEL, Lisboa, Portugal
A. Maçarico
Affiliation:
Electronics and Communications Department, ISEL, Lisboa, Portugal
I. Martins
Affiliation:
Electronics and Communications Department, ISEL, Lisboa, Portugal
P. Louro
Affiliation:
Physics Department, IST, Lisboa, Portugal
R. Schwarz
Affiliation:
Physics Department, IST, Lisboa, Portugal
Get access

Abstract

Entirely μc-Si:H p-i-n structures presenting an enhanced sensitivity to the near infrared region and a positive spectral response under forward bias higher than the open circuit voltage are analysed under different external voltage bias and illumination conditions.

A two phase model to explain the transport properties is proposed using as input parameters the measured experimental data. The results suggest that the transport is preferentially concentrated inside the crystalline grains. The conduction within the amorphous regions is poor. The percolation path is different for electrons and holes and is determined by the local fields at the boundaries. These local fields are independent of the externally applied condition, and they can be related to the persistence of the small photocurrent observed when a bias voltage higher than the open circuit voltage is applied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Veprek, S. and Marecek, V., Solid State Electronics 11 (1968) 683.Google Scholar
2. Meier, J., Dubail, S., Fluckiger, R., Fischer, D., Keppner, H., and Shah, A., Proc. 1st WCPEC (1994) 1237.Google Scholar
3. Weisfield, R., and Tsai, C.C., Mat. Res. Soc. Symp. Proc., 192 (1990) 423.Google Scholar
4. Wyrsch, N., Torres, P., Meier, J. and Shah, A., Journal of Non-Crys. Solids, 227 (1997) 1272.Google Scholar
5. Zimmer, J., Stiebig, H., and Wagner, H., Mat. Res. Soc. Symp. Proc. (S. Francisco, April, 1988) in print.Google Scholar
6. Veprek, S., Mat. Res. Soc. Symp. Proc. 164 (1990) 39.Google Scholar
7. Koynov, S., Schwarz, R., Fisher, T., Grebner, S., Munder, H., Jap. Jn. of Appl. Physics 33 (1994) 4534.Google Scholar
8. Krankenhagen, R., Schmidt, M., Henrion, W., Sieber, I., Koynov, S., Grebner, S., and Schwarz, R., Solid State Phenomena 47 (1995) 607.Google Scholar
9. Lundstrom, S. and Shuelke, R. J., IEEE Transaction on Electron Devices ED–30 (1983) 1151.Google Scholar
10. Fantoni, A., Vieira, M. and Martins, R., in Amorphous Silicon Technology, edited by Hack, M., Schiff, E. A., Madan, A., Powell, M., Matsuda, A., Mat. Res. Soc. Proc. 336 (1994) 711.Google Scholar
11. Fantoni, A., Vieira, M. Cruz, J., Schwarz, R. and Martins, R., Journal of Physics D: Applied Physics 29 (1996) 3154.Google Scholar
12. Fernandes, M., Vieira, M., Magarico, A., Koynov, S., Fantoni, A., and Schwarz, R., Mat. Res. Soc. Symp. Proc. (S. Francisco, April, 1988) in printing.Google Scholar
13. Meier, J., Dubail, S., Fisher, D., Selvan, J. A. Anna, Vaucher, N. Pellaton, Platz, R., Hof, Ch., Fluckiger, R., Kroll, U., , Nwyrsch, Tornes, P., Keppner, H., Shah, A., Ufert, K. D., 13th European Photovoltaic Solar Energy Conf. Proc. (Nice, France, 1995) 1445.Google Scholar
14. Liu, H. N., He, Y. L., Wang, F., and Grebner, S., J. of Non-Cryst. Solids 164–166 (1993) 1005.Google Scholar