Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:24:37.636Z Has data issue: false hasContentIssue false

Angular Dependent Critical Fields in NbTi-Ge Superlattices in the Weakly Localized Regime

Published online by Cambridge University Press:  26 February 2011

Ben Y. Jin
Affiliation:
Materials Research Center, Northwestern University, Evanston, IL
J. B. Ketterson
Affiliation:
Materials Research Center, Northwestern University, Evanston, IL
J. E. Hilliard
Affiliation:
Materials Research Center, Northwestern University, Evanston, IL
E. J. McNiff Jr
Affiliation:
Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA
S. Foner
Affiliation:
Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA
Ivan K. Schuller
Affiliation:
Argonne National Laboratory, Argonne, IL.
Get access

Abstract

The angular dependence of the upper critical fields, Hc(θ) for a set of NbTi-Ge superlattices were studied at various temperatures. The behavior of Hc(θ) at lower temperatures deviates from the Tinkham expression which is expected to be valid only in the Ginzberg-Landau regime close to Tc. We examine a model for calculating Hc(θ) involving the lowest eigenvalue of the gauge invariant diffusion equation (subject to boundary conditions appropriate to a slab) in the de Gennes expression for the upper critical field of a dirty superconductor at all temperatures. The disorder related localization and interaction effects as well, as the paramagnetic limiting effect, are also considered.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. de Gennes, P.G. and Guyon, E., Phys. Lett. 3, 168 (1963).Google Scholar
2. Werthamer, N.R., Phys. Rev. 132, 2440 (1963).Google Scholar
3. Jochiki, M. and Takahashi, S., Proc. Inter, conf. Mat. Mech. Super. Edited by Gschneidner, K.A. Jr, and Wolf, E.L.. (North-Holland, Amersterdam, 1985).Google Scholar
4. Menon, M., Arnold, G.B., Superlattices and Microstructures, 1, 451, (1985).Google Scholar
5. Lawerence, W.E. and Doniach, S., in Proc. of the 12th Int. Conf. Low Temp. Phys. Edited by Randa, E. (Academic Press of Tokyo, Japan, 1971), pp. 361362.Google Scholar
6. Klenmi, R.A., Luther, A., and Beasley, M.R., Phys. Rev. B12, 877 (1975).Google Scholar
7. Deutscher, G. and Wohlman, O.E., Phys. Rev. B17, 1249 (1978).Google Scholar
8. Banerjee, I., Yang, Q.S., Falco, C.M., and Schuller, I.K., Solid State Commun. 41, 805 (1982).Google Scholar
9. Saint-James, D. and de Gennes, P.G., Phys. Lett. 7, 306 (1963).CrossRefGoogle Scholar
10. Harper, F.E. and Tinkham, M., Phys. Rev. 172, 441 (1968).Google Scholar
11. Wong, H.K., Jin, B.Y., Yang, H.Q., Ketterson, J.B., and Hilliard, J.E., International Conference on Superlattices, Microstructures, and Microdevices, Champaign-Urbana, II, August 1984.Google Scholar
12. Chandrasekar, B.S., Appl. Phys. Lett., 1, 7 (1962);Google Scholar
Clogston, A.M., Phys. Rev. Lett. 9, 266 (1962).Google Scholar
13. Maekawa, S. and Fukuyama, H., J. Phys. Soc. Jpn. 51, 1380 (1982).Google Scholar
14. Maekawa, S., Ebisawa, H. and Fukuyama, H., 52, 1352 (1983).Google Scholar
15. Jin, B.Y., Shen, Y.H., Wong, H.K., Hilliard, J.E. and Ketterson, J.B. and Ivan K., Schuller, J. Appl. Phys., 57, 2543 (1985).Google Scholar
16. Jin, B.Y., Ketterson, J.B.; McNiff, E. J. Jr and Foner, S.; Ivan K., Schuller; submitted to Phys. Rev. B.Google Scholar
17. de Gennes, P.G. in “Superconductivity in Metals and Alloys”, W.A. Bengamin, New York (1966).Google Scholar
18. Maki, K., Phys. Rev. 148, 362 (1966).Google Scholar