Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T20:53:58.681Z Has data issue: false hasContentIssue false

Analytical Model of Raman Enhancement by Metal Nanoparticles

Published online by Cambridge University Press:  29 May 2012

Greg Sun
Affiliation:
University of Massachusetts Boston, Boston, Massachusetts 02125, U.S.A.
Jacob B. Khurgin
Affiliation:
Johns Hopkins University, Baltimore, Maryland 21218, U.S.A.
Get access

Abstract

We present an analytical model for the enhancement of molecular Raman process by metal nanoparticles. The result is compared with that of a PL process. Although both processes are similar in the sense that they are both a two-photon process in which one photon is absorbed and another photon at a different frequency is emitted, the SP enhancement mechanisms for these two processes have some rather distinct features. In addition to stronger enhancement, the Raman process shows no sign of quenching ever taking place even when the molecule is placed right at the surface of the metal nanoparticle – a situation that will lead to strong quenching effect in PL measurement. Significant advantages of our analytical approach include not just predications that are consistent with experimental observations, but rather a clear insight for the actual physical process at work.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kühn, S., Håkanson, U., Rogobete, L., and Sandoghdar, V., Phys. Rev. Lett. 97, 017402 (2006)Google Scholar
2. Novotny, L., Appl. Phys. Lett. 69, 3806 (1996)Google Scholar
3. Moskovitz, M., Rev. Mod. Phys. 57, 783 (1985)Google Scholar
4. Moskovits, M., Tay, L.-L., Yang, J., and Haslett, T., Top. Appl. Phys. 82, 215226 (2002)Google Scholar
5. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. R., and Feld, M. S., Phys. Rev. Lett. 78, 1667 (1997)Google Scholar
6. Nie, S. and Emory, S. R., Science 275, 11021106 (1997)Google Scholar
7. Michaels, A. M., Nirmal, M., and Brus, L. E., J. Am. Chem. Soc. 121, 9932 (1999)Google Scholar
8. Wang, Z., Pan, S., Krauss, T. D., Dui, H., and Rothberg, L. J., Proc. Natl. Acad. Sci. U.S.A. 100, 8638 (2003)Google Scholar
9. Fleischmann, M., Hendra, P. J., and McQuillan, A. J., Chemical Physics Letters 26 (2): 163166 (1974)Google Scholar
10. Bakker, M., Drachev, V. P., Liu, Z., Yuan, H.-K., Pedersen, R. H., Boltasseva, A., Chen, J., Irudayaraj, J., Kildishev, A. V., and Shalaev, V. M., New Journal of Physics, 10, 125022–8–16 (2008).Google Scholar
11. Dulkeith, E., Morteani, A. C., Niedereichholz, T., Klar, T. A., and Feldmann, J., Phys. Rev. Lett. 89, 203002 (2002)Google Scholar
12. Khurgin, J. B., Sun, G., and Soref, R. A., Appl. Phys. Lett. 93, 021120 (2008)Google Scholar
13. Sun, G., Khurgin, J. B., and Soref, R. A., J. Opt. Soc. Am. B 25, 1748 (2008)Google Scholar
14. Khurgin, J. B., Sun, G., and Soref, R. A., Appl. Phys. Lett. 94, 071103 (2009)Google Scholar
15. Sun, G., Khurgin, J. B., and Soref, R. A., Appl. Phys. Lett. 94, 101103 (2009)Google Scholar
16. Sun, G., Khurgin, J. B., and Yang, C. C., Appl. Phys. Lett. 95, 171103 (2009)Google Scholar
17. Sun, G. and Khurgin, J. B., Appl. Phys. Lett. 97, 263110 (2010)Google Scholar
18. Sun, G. and Khurgin, J. B., Appl. Phys. Lett. 98, 113116 (2011)Google Scholar
19. Sun, G. and Khurgin, J. B., Appl. Phys. Lett. 98, 153115 (2011)Google Scholar
20. Sun, G., Khurgin, J. B., and Bratkovsky, A., Phys. Rev. B 84, 045415 (2011)Google Scholar
21. Etchegoin, P. G., Le Ru, E. C., and Meyer, M., J. Chem. Phys. 125, 164705 (2006)Google Scholar
22. Johnson, P. B. and Christy, R. W., Phys. Rev. B 6, 4370 (1972)Google Scholar
23. Boyd, R. W., Nonlinear Optics, 2nd ed. Academic Press, San Diego, 2003, p. 169 Google Scholar