Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T23:37:22.505Z Has data issue: false hasContentIssue false

Analysis of the Structural Specificity of ZrO2 Nanoparticles in Pillared Clays by Modeling of the Condensation Process in ZrOCl2*8H2O Solutions

Published online by Cambridge University Press:  26 February 2011

Natalya Mezentseva
Affiliation:
[email protected], Boreskov Institute of Catalysis, Prospekt Akademika Lavrentieva 5, Novosibirsk, N/A, 630090, Russian Federation
Vladislav Aleksandrovich Sadykov
Affiliation:
[email protected], Boreskov Institute of Catalysis, Heterogeneous catalysis, Russian Federation
Vasilii Ivanovich Avdeev
Affiliation:
[email protected], Boreskov Institute of Catalysis, Heterogeneous catalysis, Russian Federation
Vladimir L'vovich Kuznetsov
Affiliation:
[email protected], Boreskov Institute of Catalysis, Heterogeneous catalysis, Russian Federation
Get access

Abstract

A combination of quantum-chemical approaches including DFT, semiempirical PM3 and molecular mechanics (force field MM+) methods has been applied for analysis of the structure of polynuclear hydroxocomplexes of Zr in diluted solutions of its oxochloride as precursors of zirconia nanoparticles in zirconia-pillared clays. Relative stability of complexes differing by their size and shape has been estimated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sadykov, V.A., Kuznetsova, T.G.. et al. , Chemistry for Sustain. Developm. 11, 249 (2003).Google Scholar
2. Kuznetsova, T.G., Sadykov, V.A., et al. RF Patent No. 2194573 of 17.09.01.Google Scholar
3. Sadykov, V. A., Kuznetsova, T.G. et al. Mat. Res. Symp. Proc. 703, 529 (2002).Google Scholar
4. Sadykov, V.A., et al. Topics in Catalysis 32, 29 (2005).Google Scholar
5. Sadykov, V.A., Bunina, R.V., et al. , J. Catal. 2001, 200, 117.Google Scholar
6. Linsen, B. G., Kess, Academic P.Physical and Chemical aspects of adsorbents and catalysts”.London and New York, 1970, 332383.Google Scholar
7. Inorganic crystal structure database (ICSD). Canad. Journ. Chem. 46, 3491 (1968).Google Scholar
8. Allinger, N.L. J. Am. Chem. Soc. 99:8127, 1977.Google Scholar
9. Frisch, M. J., Trucks, G. W., Schlegel, H. B. at al., Gaussian 98, Revision A.11, Gaussian, Inc., Pittsburgh PA, 2001.Google Scholar
10. Parr, R.G., Yang, W., Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.Google Scholar
11. Hohenberg, P., Kohn, W., Phys.Rev. B 136 (1964) 864.Google Scholar
12. Kohn, W., Sham, L.S., Phys.Rev. A 140 (1965) 1133.Google Scholar
13. Becke, A.D., Phys. Rev. A, 38 (1988) 3098.Google Scholar
14. Becke, A.D., J. Chem. Phys. 98 (1993) 5648.Google Scholar
15. Lee, C., Yang, W., Parr, R.G., Phys. Rev. B, 37 (1988) 785.Google Scholar
16. Krishnan, R., Seger, J. S., Pople, J. A., J. Chem. Phys. 72 (1980) 650.Google Scholar
17. Stevens, W., Bash, H., Krauss, J., J. Chem. Phys. 81 (1984) 6026.Google Scholar
18. Clearfild, A. Rev. Pure & Appl. Chem. 1964, 14, 19.Google Scholar
19. Miehe-Brendle, J., Khouchaf, L., Baron, J., Le Dred, R., Tuilier, M.-H.. Microporous Materials 11 (1997) 171183.Google Scholar
20. Clearfild, A. J. Mater.Res. 1990, 5, 161.Google Scholar
21. Singhal, , Toth, L.M., Lin, J.S., and Affholter, K. J. Am. Chem. Soc. 1996, 118, 1152911534.Google Scholar