Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T13:00:37.936Z Has data issue: false hasContentIssue false

Analysis of the Mechanical Behavior of a Paperboard Profile

Published online by Cambridge University Press:  11 May 2015

M. Rico*
Affiliation:
Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, U. Azcapotzalco, Av. de las Granjas 682. Col. Sta. Catarina, Azcapotzalco, México D.F.
J. M. Sandoval
Affiliation:
Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, U. Azcapotzalco, Av. de las Granjas 682. Col. Sta. Catarina, Azcapotzalco, México D.F.
L.A. Flores
Affiliation:
Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, U. Azcapotzalco, Av. de las Granjas 682. Col. Sta. Catarina, Azcapotzalco, México D.F.
N. Muñoz
Affiliation:
Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, U. Azcapotzalco, Av. de las Granjas 682. Col. Sta. Catarina, Azcapotzalco, México D.F.
P.A. Tamayo
Affiliation:
Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, U. Azcapotzalco, Av. de las Granjas 682. Col. Sta. Catarina, Azcapotzalco, México D.F.
R. G. González
Affiliation:
ESIQUIE-IPN, Laboratorio de Foto-Electrocatálisis, UPALM, C.P. 07738 México, D.F., México.
Get access

Abstract

This paper shows the technological development for manufacturing corner angle sections or cardboard. Its manufacture involves splicing sheets (liners) of different weight Kraft papers joined with white glue. The thickness and strength of each profile is determined by the amount of spliced leaves and paperweight. There are two types of finishing in the profile, which are: natural finish Kraft wrapping paper and the white paper envelope. The second one is used to print images or logos on the exterior face for advertising purposes. They can withstand bending stresses for supporting buckling in horizontal and vertical position. These profiles are mainly used for packaging, protect corners, transportation and storage. A machine for manufacturing specialized linear process to obtain the required thickness is used. In this article, the basic load of an angular profile is analyzed by the finite element method using ANSYS 14 ®. Mechanical design considerations based on the mechanics of composite materials and the theory of laminated beams are considered. With the results of this analysis, load capacities like bending, buckling and deformation profiles are obtained. Furthermore, a comparison of three thicknesses of angular profiles supporting the mentioned loads is also presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nordstrand, T., Composite Structures, 27, 317 (1994).CrossRefGoogle Scholar
Aboura, Z., Composite Structures 63, 53 (2004).CrossRefGoogle Scholar
Miravete, A., Materiales Compuestos, Tomo I. Edited by INO Reproducciones Zaragoza, 181 (2000).Google Scholar
Tryding, J., In-Plane Fracture of paper, Report TVSM-1008. Edited by Lund University, Division of Structural Mechanics, Sweden, 2 (1996).Google Scholar
Baum, G., The elastic properties of paper: a review, IPC Technical paper series 145 (1987).Google Scholar
Hollaway, L., Polymers Composites for Civil and Structural Engineering, Edited by Blackie Academic & Professional, (1993).Google Scholar
Timoshenko, S., Theory of plates and shells. 2nd Ed. McGraw-Hill Classic Text Book Reissue, 396 (1987).Google Scholar
Hahn, H., Tsai, S., Journal of Composite Materials, 7, 102 (1973).CrossRefGoogle Scholar
ANSYS Tutorial 2014, Shell 281.Google Scholar
Batoz, J.L., Bath, K.J., Int J Numer Meth Eng., 15, 812 (1980).CrossRefGoogle Scholar
Gilchrist, A. C., Suhling, J.C., Mech Cellulosic Mat, 85, 7 (1999).Google Scholar
Nordstrand, T., Composite Structures, 30, 51 (1995).CrossRefGoogle Scholar
Damatty, A., Mikhael, A., Thin-Walled Struct, 38, 65 (2000).CrossRefGoogle Scholar
Batoz, J.L., Bath, K. A., search for the optimum three-node triangular plate bending element. Edited by Rapport 82448-8, Massachusetts Institute of Technology, (1978).Google Scholar