Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T20:32:31.175Z Has data issue: false hasContentIssue false

Analysis of Hydrogen Adsorption in Microporous Adsorbents at Room Temperature and High Pressures

Published online by Cambridge University Press:  25 October 2011

Tyler G. Voskuilen
Affiliation:
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
Timothée L. Pourpoint
Affiliation:
School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907, USA
Get access

Abstract

An experimental study of hydrogen adsorption in a variety of high-surface area adsorbent materials has been conducted at room temperature and pressures up to 500 bar on high surface area activated carbons, zeolite templated carbons (ZTC), and metal organic frameworks (MOFs). For all materials, excess hydrogen adsorption isotherms were measured up to 500 bar and have been analyzed in terms of the BET surface area and pore size distribution. The materials were also evaluated for their increase in hydrogen storage density over compressed gas. It was determined that, due to the lower excess adsorption and skeletal densities for the microstructured materials, MOF-177 and ZTC have worse storage densities than compressed gas at most pressures, even when assuming a bed compaction factor of two, while the activated carbons offer marginal increases in storage density over the pressure range investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jordá-Beneyto, M., Suarez-Garcia, F., Lozano-Castello, D., Cazorla-Amoros, D., and Linares-Solano, A., Carbon 45, 293 (2007).10.1016/j.carbon.2006.09.022Google Scholar
2. Nishihara, H., Hou, P.-X., Li, L.-X., Ito, M., Uchiyama, M., Kaburagi, T., Ikura, A., Katamura, J., Kawarada, T., Mizuuchi, K., and Kyotani, T., J. Phys. Chem. 113, 3189 (2009).Google Scholar
3. de la Casa Lillo, M. A., Lamari-Darkrim, F., Cazorla-Amoros, D., and Linares-Solano, A., Phys. Chem. B 106, 10930 (2002).Google Scholar
4. Alcaniz-Monge, J. and Roman-Martinez, M. C., Microporous and Mesoporous Materials 112, 510 (2008).10.1016/j.micromeso.2007.10.031Google Scholar
5. Züttel, A., Sudan, P., Mauron, P., Kiyobayashi, T., Emmenegger, C., and Schlapbach, L., Int. J. Hydrogen Energy 27, 203 (2002).Google Scholar
6. Voskuilen, T., Zheng, Y., and Pourpoint, T., Int. J. Hyd. Energy 35, 10387 (2010).Google Scholar
7. Leachman, J., Jacobsen, R., and Lemmon, E., J. Phys. Chem. Reference Data 38, 721 (2009).Google Scholar
8. Haesselbarth, W. and Bremser, W., Accreditation and Quality Assurance 9, 597 (2004).Google Scholar
9. ISO 5725-1. Accuracy (trueness and precision) of measurement methods and results-Part 1: General principles and definitions, 1994.Google Scholar
10. Li, Y. and Yang, R. T., Langmuir 23, 12937 (2007).Google Scholar
11. Proch, S., Herrmannsdorfer, J., Kempe, R., Kern, C., Jess, A., Seyfarth, L., and Senker, J., Chem. Eur. J. 14, 8204 (2008).Google Scholar
12. Zacharia, R., Cossement, D., Lafi, L. and Chahine, R., J. Mater. Chem. 20, 2145 (2010).Google Scholar
13. Gogotsi, Y., Portet, C., Osswald, S., Simmons, J. M., Yildirim, T., Laudisio, G., and Fischer, J. E., Int. J. Hydrogen Energy, 34, 6314 (2009).10.1016/j.ijhydene.2009.05.073Google Scholar
14. Purewal, J. J., Liu, D., Yang, J., Sudik, A., Siegel, D.J., Maurer, S., Muller, U., Int. J. Hydrogen Energy, In Press, DOI: 10.1016/j.ijhydene.2011.03.002 (2011).Google Scholar