Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T03:23:07.786Z Has data issue: false hasContentIssue false

Analysis of Electromigration-Induced Void Motion and Surface Oscillations in Metallic Thin-Film Interconnects

Published online by Cambridge University Press:  01 February 2011

Jaeseol Cho
Affiliation:
Department of Chemical Engineering, University of Massachusetts, Amherst MA, 01003, U.S.A.
M. Rauf Gungor
Affiliation:
Department of Chemical Engineering, University of Massachusetts, Amherst MA, 01003, U.S.A.
Dimitrios Maroudas
Affiliation:
Department of Chemical Engineering, University of Massachusetts, Amherst MA, 01003, U.S.A.
Get access

Abstract

An analysis is presented of electromigration-induced migration and oscillatory dynamics of morphologically stable void surfaces based on self-consistent numerical simulations of morphological evolution of voids in metallic thin films. As the morphological stability limit is approached, the migration speed of a stable void deviates substantially from being inversely proportional to the void size, a well-known result that is rigorously valid in an infinite conductor with isotropic material properties. A non-linear shape function that includes both current crowding and diffusional anisotropy effects is used to rescale properly the void migration speed resulting in a universally valid relationship for the migration speed as a function of void size. Furthermore, in grains characterized by high symmetry of surface diffusional anisotropy, our analysis predicts the onset of stable time-periodic states for the void surface morphology that correspond to waves propagating on surfaces of voids that migrate along the metallic film at constant speeds.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ho, P. S., J. Appl. Phys. 41, 64 (1970).Google Scholar
2. Ho, P. S. and Kwok, T., Rep. Prog. Phys. 52, 301 (1989).Google Scholar
3. Thompson, C. V. and Lloyd, J. R., MRS Bull. 18 (12), 19 (1993).Google Scholar
4. Hu, C.K. and Harper, J. M. E., Mater. Chem. Phys. 52, 5 (1998).Google Scholar
5. Suo, Z., Wang, W., and Yang, M., Appl. Phys. Lett. 64, 1944 (1994); W. Q. Wang, Z. Suo, and T.H. Hao, J. Appl. Phys. 79, 2394 (1996).Google Scholar
6. Kraft, O. and Arzt, E., Appl. Phys. Lett. 66, 2063 (1995); O. Kraft and E. Arzt, Acta Mater. 45, 1599 (1997).Google Scholar
7. Maroudas, D., Appl. Phys. Lett. 67, 798 (1995); M. R. Gungor and D. Maroudas, Appl. Phys. Lett. 72, 3452 (1998); M. R. Gungor and D. Maroudas, Surf. Sci. 415, L1055 (1998); M. R. Gungor and D. Maroudas, J. Appl. Phys. 85, 2233 (1999).Google Scholar
8. Gungor, M. R. and Maroudas, D., Surf. Sci. 461, L550 (2000).Google Scholar
9. Gungor, M. R. and Maroudas, D., Int. J. Fracture 109, 47 (2001).Google Scholar
10. Krug, J. and Dobbs, H. T., Phys. Rev. Lett. 73, 1947 (1994); M. Schimschak and J. Krug, Phys. Rev. Lett. 80, 1674 (1998); M. Schimschak and J. Krug, J. Appl. Phys. 87, 695 (2000).Google Scholar
11. Mahadevan, M. and Bradley, R. M., J. Appl. Phys. 79, 6840 (1996); M. Mahadevan and R. M. Bradley, Phys. Rev. B 59, 11037 (1999).Google Scholar
12. Xia, L., Bower, A. F., Suo, Z., and Shih, C. F., J. Mech. Phys. Solids 45, 1473 (1997); D. R. Fridline and A. F. Bower, J. Appl. Phys. 85, 3168 (1999).Google Scholar
13. Bradley, R. M., Phys. Rev. E 65, 036603 (2002).Google Scholar
14. Cho, J. S., Gungor, M. R., and Maroudas, D., Appl. Phys. Lett. 85, 22142216 (2004).Google Scholar
15. Cho, J. S., Gungor, M. R., and Maroudas, D., Surf. Sci. 575, L41–L50 (2005).Google Scholar
16. Shingubara, S., Kaneko, H., and Saitoh, M., J. Appl. Phys. 69, 207212 (1991).Google Scholar
17. Kraft, O., Bader, S., Sanchez, J. E. Jr, Arzt, E., Mater. Res. Soc. Symp. Proc. 309, 199 (1993).Google Scholar