Article contents
Analysis and Comparison of Tomographic Gamma Scanner (TGS) Architectures for Nuclear Waste Characterization Systems
Published online by Cambridge University Press: 28 March 2012
Abstract
In recent years, nuclear waste management has become a fundamental issue in the nuclear energy production cycle. Tomographic Gamma Scanner (TGS) is an essential tool for nuclear waste characterization. It is crucial to rely on local support and cost effective solutions; for this reasons, we are designing our TGS system based on local technology. In this work, we present a study of different geometries and instrumentation chain parameters to design a TGS.
A set of Monte Carlo simulations were performed to evaluate energy and spatial resolution limitations of scintillator, CZT (Cadmium Zinc Telluride), and HPGe (high purity germanium) detectors. Collimator and detector geometries were studied to maximize the characteristics of the system. In this study, a phantom of 137Cs and 60Co was utilized to evaluate the overall performance of the proposed TGS system. In addition, the impact of electronic instrumentation chain and image reconstruction algorithms was taken into account.
- Type
- Articles
- Information
- MRS Online Proceedings Library (OPL) , Volume 1475: Symposium NW – Scientific Basis for Nuclear Waste Management XXXV , 2012 , imrc11-1475-nw35-o33
- Copyright
- Copyright © Materials Research Society 2012
References
REFERENCES
- 2
- Cited by