Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-02T23:07:12.248Z Has data issue: false hasContentIssue false

An Optimized Synthetic Route for the Preparation of Water-Soluble Nanomagnetic Conducting Polyaniline with High Processability

Published online by Cambridge University Press:  21 March 2011

Sarswati Koul
Affiliation:
Electrical and Computer Engineering University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Arokia Nathan
Affiliation:
Electrical and Computer Engineering University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Get access

Abstract

The synthesis of water soluble nanomagnetic conducting polyaniline with an average particle size of 8nm ±1nm is presented. The particle growth morphology during reaction kinetics was controlled by using polyelectrolyte mediated dual oxidant-dopant system. The synthesis was carried out in a single reactor and the entire synthetic approach follows the principles of green chemistry. Dual oxidant-dopant system offers a solvent less chemical route for the synthesis of nanomagnetic polyaniline with maximum yield production.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sun, S., Murry, C. B., Weller, D., Folks, L. and Moser, A., Science 287, 1989 (2000).Google Scholar
2. Maclachlam, M. J., Ginzburg, M., Coombs, N., Coyle, T. W., Raju, N. P., Greedan, J. E., Ozin, A. G. and Manners, I., Science 287, 1460 (2000).Google Scholar
3. Wizel, S., Margel, S. and Gedanken, A., Polym. International, 49, 445 (2000).Google Scholar
4. Ely, O.T., Amienes, C., Chaudret, B., Snoeck, E., Verelst, M. and Respaud, M., J. M. Chem. Mater. 11, 526 (1999).Google Scholar
5. Hess, P.H. and Parker, P. H., J. Appl. Polymer Science 10, 1915 (1966); C. H. Griffiths, M. P. Ohoro, T.W. Smith, J. Appl. Phys. 50, 7108 (1979).Google Scholar
6. Mohilner, D. M., Adams, R. N., Argersinger, W. J., J. Am. Chem. Soc. 84, 3618 (1962).Google Scholar
7. Sun, Y., MacDiarmid, A. G. and Epstein, A. J., J. Chem. Soc. Chemical Communication 529 (1990)Google Scholar
8. Pouget, J. P., Jozefowicz, M., Epstein, A. J., Tang, X. and MacDiarmid, A. G., Macromolecules 24, 779 (1991).Google Scholar
9. Epstein, A. J., Ginder, J. M., Zuo, F., Bigelow, R. W., Woo, H. S., Tanner, D. B., Richter, A. F., Huang, W.S. and MacDiarmid, A. G., Synthetic Metals 18, 303 (1987).Google Scholar
10. Chaudhuri, D., Kumar, A., Sharma, D. D., Garcia-Hernandez, M., Joshi, J. P. and Bhat, S. V., Applied Physics Letters 82, 1733 (2003).Google Scholar