Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T23:33:10.797Z Has data issue: false hasContentIssue false

An Innovative Process for Synthesis of Carbon-Base Nanostructured Materials Using a Solid-State Route

Published online by Cambridge University Press:  01 October 2015

I. Estrada-Guel
Affiliation:
Department of Mechanical Engineering Technology, University of Houston, Houston, TX 77204 USA. Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes No. 120, C.P. 31136, Chihuahua, Chih, Mexico.
A. Okonkwo
Affiliation:
Department of Mechanical Engineering Technology, University of Houston, Houston, TX 77204 USA.
Z. Tang
Affiliation:
Department of Chemistry, and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, USA.
A. M. Guloy
Affiliation:
Department of Chemistry, and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, USA.
F.C. Robles-Hernandez
Affiliation:
Department of Mechanical Engineering Technology, University of Houston, Houston, TX 77204 USA.
Get access

Abstract

This work shows a cost effective process to prepare carbon-carbon nanostructured composites using mechanical milling (MM) and a new manufacturing method based on rapid induction sintering. Here we use commercially and cost effective amorphous sources of carbon. The nature of the raw carbon is characterized by means of XRD and Raman, and after MM and sintering we observe a clear evolution of the phases of carbon in situ into more complex structures, including but not limited to graphene, graphitic carbon, and nanodiamond. The raw soot transforms in situ into graphitic particles after 1 hour of MM. Further milling (10 hours) induces the formation of nano-diamond particles. Milling times between 1 and 10 h are ideal to prepare intermediate phases between graphene and nanodiamond. In other words MM is capable of inducing the formation of nearly amorphous carbon soot into complex structures that are ideal for structural composite materials. The sintering process is a novel method involving a “pressureless” process and rapid induction heating. Furthermore, the carbon nanostructures that are produced during milling serve as seeds to grow larger particles that can easily reach micrometric sizes. This process achieved high densification as that proposed in commercial methods such as Spark Plasma Sintering.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., DeAngelo, B.J., Flanner, M.G., Ghan, S., Karcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., Schultz, M.G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S.K., Hopke, P.K., Jacobson, M.Z., Kaiser, J.W., Klimont, Z., Lohmann, U., Schwarz, J.P., Shindell, D., Storelvmo, T., Warren, S.G. and Zender, C.S., J. Geophys. Res.-Atmos. 118, 53805552 (2013).CrossRefGoogle Scholar
El-Eskandarany, M.S., in Mechanical alloying for fabrication of advanced engineering materials, (Noyes Publications/William Andrew Pub., Norwich, N.Y., 2001).Google Scholar
Suryanarayana, C., Mechanical alloying and milling, Prog. Mater. Sci. 46, 1184 (2001).CrossRefGoogle Scholar
Mosbah, A., Calka, A. and Wexler, D., J. Alloy Compd. 424, 279282 (2006).CrossRefGoogle Scholar
Wang, L.L. and Jiang, J.S., Physica B-Condensed. Matter. 390, 2327 (2007).CrossRefGoogle Scholar
Zhang, Q.W., Kano, J. and Saito, F., Handb. Powd. Technol. 12, 509528 (2007).CrossRefGoogle Scholar
Pourghahramani, P. and Forssberg, E., Powder Technol. 178, 3039 (2007).CrossRefGoogle Scholar
Pourghahramani, P. and Forssberg, E., Int. J. Miner. Process. 82, 96105 (2007).CrossRefGoogle Scholar
Garcia, F., Le Bolay, N., Trompette, J.L. and Frances, C., Int. J. Miner. Process. 74, S43S54 (2004).CrossRefGoogle Scholar
Li, H., Li, H.R., Guo, Z.C. and Liu, Y., Ultrason. Sonochem. 13, 359363 (2006).CrossRefGoogle Scholar
Cizeron, G., Dessieux, R. and Barreau, G., Ann. Chim. France 9, 305321 (1974).Google Scholar
Kingery, W.D., Bowen, H.K. and Uhlmann, D.R., in Introduction to Ceramics, 2d ed. (Wiley, N.Y., 1975).Google Scholar
Santanach, J.G., Estournes, C., Weibel, A., Chevallier, G., Bley, V., Laurent, C. and Peigney, A., J. Eur. Ceram. Soc. 31, 22472254 (2011).CrossRefGoogle Scholar
Khalil, K.A. and Almajid, A.A., Mater. Design. 36, 5868 (2012).CrossRefGoogle Scholar
Kim, W., Suh, C.Y., Roh, K.M., Lim, J.W., Lee, S., Du, S.L. and Shon, I.J., Ceram. Int. 39, 585591 (2013).CrossRefGoogle Scholar
Artemenko, A., Elissalde, C., Chung, U.C., Estournes, C., Mornet, S., Bykov, I. and Maglione, M., Appl. Phys. Lett. 97, 132901 (2010).CrossRefGoogle Scholar
Chaim, R., Levin, M., Shlayer, A. and Estournes, C., Adv. Appl. Ceram. 107, 159169 (2008).CrossRefGoogle Scholar
Santanach, J.G., Weibel, A., Estournes, C., Yang, Q., Laurent, C. and Peigney, A., Acta Mater. 59, 14001408 (2011).CrossRefGoogle Scholar
Chamberlain, A.L., Fahrenholtz, W.G. and Hilmas, G.E., J. Am. Ceram. Soc. 89, 450456 (2006).CrossRefGoogle Scholar
Jafari, M., Enayati, M.H., Abbasi, M.H. and Karimzadeh, F., Mater. Design. 31, 663669 (2010).CrossRefGoogle Scholar
Lee, H. and Speyer, R.F., J. Am. Ceram. Soc. 86, 14681473 (2003).CrossRefGoogle Scholar
Fu, L., Cao, L.H. and Fan, Y.S., Scripta Mater. 44, 10611068 (2001).CrossRefGoogle Scholar
Iijima, S., Nature 354, 5658 (1991).CrossRefGoogle Scholar
Xu, G.S., Yamakami, T., Yamaguchi, T., Endo, M., Taruta, S. and Kubo, I., Int. J. Appl. Ceram. Tec. 11, 280288 (2014).CrossRefGoogle Scholar
Jones, D.E.H., Nature 381, 384 (1996).CrossRefGoogle Scholar
Ferrari, A.C. and Robertson, J., Phys. Rev. B 61, 1409514107 (2000).CrossRefGoogle Scholar
Setasuwon, P. and Metanawin, T., Mater. Res.-Ibero.-Am. J. 12, 8994 (2009).Google Scholar
Fals, A.E., Hadjiev, V.G. and Robles Hernández, F.C., Mater. Chem. Phys. 140, 651658 (2013).CrossRefGoogle Scholar