Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T03:03:21.644Z Has data issue: false hasContentIssue false

An HVEM Investigation of In-Situ, Self-Ion Damage in Iron at 40 and 300 K*

Published online by Cambridge University Press:  25 February 2011

M. A. Kirk
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, IL 60439
I. M. Robertson
Affiliation:
Materials Research Lab., University of Illinois, Urbana, IL 61801
Wayne E. King
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, IL 60439
E. A. Ryan
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, IL 60439
A. Philippides
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Bombardments of iron (commercially pure) with self-ions having energies of 50 and 100 keV were performed in–situ in a High–Voltage Electron Microscope at temperatures of 40 and 300 K. The resulting damage microstructures were examined at the irradiation temperature in the HVEM using 200, 300, 500 and 1000 keV electrons (damage threshold in Fe is ˜330 keV). Dislocation loop densities were measured as functions of ion dose, ion energy, irradiation temperature, electron dose (500 keV), and step annealing to room temperature. Loop geometries, size distributions, and nature (interstitial or vacancy) were also determined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work supported by the U. S. Department of Energy, Division of Materials Science, through contracts DE-AC02-76ER01198 (U. of IL) and W-31-109-ENG-38 (ANL).

References

1. Black, T. J., D. Phil. Thesis, University of Oxford, U.K., 1984, unpublished; some preliminary results: T. J. Black, M. L. Jenkins, and M. A. Kirk, in proc. of EMAG 83, P. Doig, editor, The Institute of Physics Conference Series No. 68, London, 1984, p. 343.Google Scholar
2. Haga, K., Baily, A. C., King, Wayne E., Merkle, K. L. and Meshii, M., in Proc. of 7th Int. Conf. on High-Voltage Electron Microscopy, Univ. of California, August 16–19, 1983, page 139 in LBL-16031.Google Scholar
3. Dunlop, A., Pande, B. M., Böhing, K., Rosner, P. and Schaefer, H. E., J. Nucl. Mat. 108 and 109, p. 83 (1982).10.1016/0022-3115(82)90475-5Google Scholar
4. Robertson, I. M., Kirk, M. A. and King, Wayne E., Scripta Met. 18, p. 317 (1984).Google Scholar
5. Jenkins, M. L., English, C. A. and Eyre, B. L., Phil Mag. A 38, p. 97 (1978).10.1080/01418617808239220Google Scholar
6. Robinson, T. M., Phys. Stat. Sol. (a) 75, p. 243 (1983).10.1002/pssa.2210750127CrossRefGoogle Scholar
7. Taylor, A., Wallace, J. R., Ryan, E. A., Philippides, A. and Wrobel, J. R., Nucl. Inst. Methods 189, p. 211 (1981).10.1016/0029-554X(81)90148-8Google Scholar
8. King, Wayne E., in Electron Microscopy 1978, Vol.1, ed. Sturgers, J. M., Microscopist Society of Canada, 1978, p. 68.Google Scholar
9. Snykesr, M. and Janssens, C., Centre d'Etude de L'Energie Nucleaire, Mo1 (Belgium), BLG 521 (1978).Google Scholar
10. Tabata, T., Fujita, H., Ishii, H., Igahi, K. and Isshiki, M., Scripta Met. 14, 1317 (1981).10.1016/0036-9748(81)90090-9Google Scholar
11. Averback, R. S., private communication of TRIM code calculation.Google Scholar