Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-02T20:36:59.057Z Has data issue: false hasContentIssue false

An Atomistic Study of the Equilibrium Segregation of Hydrogen to Tilt Boundaries in Nickel

Published online by Cambridge University Press:  15 February 2011

N. R. Moody
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969.
S. M. Foiles
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969.
Get access

Abstract

In this study, Monte Carlo simulations have been combined with Embedded Atom Method (EAM) calculations to study hydrogen segregation at the atomic level in an ideal nickel lattice with a Σ9 tilt boundary. The calculations indicate that trap binding energies exceed 0.5 eV on the tilt boundary, but decrease rapidly with distance. Furthermore, the calculations show that trap site occupancy increases with trap site binding energy and hydrogen activity, and reach saturation at high hydrogen concentrations. Most importantly, significant rearrangements in tilt boundary structure are predicted to occur as hydrogen concentration increases. The results are consistent with observations that show significant hydrogen concentration enhancement at grain boundaries in nickel and palladium. They also parallel the effect of hydrogen concentration on crack growth susceptibility in nickel and iron-rich alloys. However, the change in boundary structure as hydrogen concentration increases challenges our understanding of hydrogen-induced fracture.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Moody, N. R., Robinson, S. L., and Perra, M. W., Hydrogen Effects on Material Behavior, edited by Moody, N. R. and Thompson, A. W. (TMS, Warrendale, PA, 1990) pp. 625–35.Google Scholar
2. Moody, N. R., Robinson, S. L., and Garrison, W. M., Res Mechanica 2Q, 143 (1990).Google Scholar
3. Moody, N. R., Perra, M. W., and Robinson, S. L., Scripta Metallurgica 22, 1261 (1988).Google Scholar
4. Perra, M. W., in Environmental Degradation of Engineering Materials in Hydrogen, edited by Louthan, M. R. Jr., McNitt, R. P., and Sisson, R. D. Jr. (VPI Press, Blacksburg, VA, 1981) pp. 321–33.Google Scholar
5. Mutschele, T. and Kirchheim, R., Scripta Metall. 21, 135 (1987).Google Scholar
6. Fukushima, H. and Birnbaum, H. K., Acta Metall. 32, 851 (1984).CrossRefGoogle Scholar
7. Hirth, J. P., Metall. Trans. A lA, 861 (1980).Google Scholar
8. Baskes, M. I. and Vitek, V., Metall. Trans. A 16A, 1625 (1985).CrossRefGoogle Scholar
9. Foiles, S. M., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O., (Mater. Res. Symp. Proc., 81, Pittsburgh, PA 1987) pp. 5156.Google Scholar
10. Daw, M. S., Baskes, M. I., Bisson, C. L., and Wolfer, W. G., in Modeling Environmental Effects on Crack Growth Processes, edited by Jones, R. H. and Gerberich, W. W., (TMS-AIME, Warrendale, PA 1986) pp.99124.Google Scholar
11. Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983).Google Scholar
12. Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).Google Scholar
13. Mills, M. J. and Daw, M. S., in High Resolution Electron Microscopy of Defects in Materials, edited by Sinclair, R., Smith, D. J., and Dahmen, U., (Mater. Res. Symp. Proc., 183, Pittsburgh, PA 1991) pp. 1926.Google Scholar
14. Daw, M. S. and Foiles, S. M., Phys. Rev. B 35, 2128 (1987).Google Scholar
15. Foiles, S. M., Phys. Rev. B 32. 7685 (1985).Google Scholar
16. Foiles, S. M., Baskes, M. I., Melius, C. F., and Daw, M. S., J. of the Less Common Metals 130, 465 (1987).Google Scholar
17. Foiles, S. M., Baskes, M. I. and Daw, M. S., Phys. Rev. B 33. 7983 (1986).Google Scholar
18. Ashby, M. F., Spaepen, F., and Williams, S., Acta Metall. 26, 1647 (1978).CrossRefGoogle Scholar
19. Baskes, M. I., Melius, C. F., and Wilson, W. D., in Interatomic Potentials and Crystalline Defects, edited by Lee, J. K. (TMS-AIME, Warrendale, PA, 1981) pp. 249–7 1.Google Scholar
20. Baskes, M. I., Melius, C. F., and Wilson, W. D., in Hydrogen Effects in Metals, edited by Bernstein, I. M. and Thompson, A. W., (TMS-AIME, Warrendale, PA, 1981) pp. 6775.Google Scholar