Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T05:29:15.464Z Has data issue: false hasContentIssue false

An AlGaAs/InGaAs HEMT Grown on Si Substrate with Ge/GexSi1-x Metamorphic Buffer Layers

Published online by Cambridge University Press:  01 February 2011

Edward Chang
Affiliation:
[email protected], National Chiao-Tung University, Department of Materials Science and Engineering, National Chiao-Tung University, Hsin-Chu 30050, Taiwan, R.O.C., Hsin-Chu, 30050, Taiwan, (886)-3-5131536, (886)-3-5751826
Yueh-Chin Lin
Affiliation:
[email protected], National Chiao-Tung University, Department of Materials Science and Engineering, 1001 Ta-Hsueh Rd., Hsin-Chu, 30010, Taiwan
Yu-Lin Hsiao
Affiliation:
[email protected], National Chiao-Tung University, Department of Materials Science and Engineering, 1001 Ta-Hsueh Rd., Hsin-Chu, 30010, Taiwan
Y.C. Hsieh
Affiliation:
[email protected], National Chiao-Tung University, Department of Materials Science and Engineering, 1001 Ta-Hsueh Rd., Hsin-Chu, 30010, Taiwan
Chia-Yuan Chang
Affiliation:
[email protected], National Chiao-Tung University, Department of Materials Science and Engineering, 1001 Ta-Hsueh Rd., Hsin-Chu, 30010, Taiwan
Chien-I Kuo
Affiliation:
[email protected], National Chiao-Tung University, Department of Materials Science and Engineering, 1001 Ta-Hsueh Rd., Hsin-Chu, 30010, Taiwan
Guang-Li Luo
Affiliation:
[email protected], National Nano Device Laboratories, No 26, Prosperity Road 1, Science-based Industrial Park, Hsin-Chu, 30078, Taiwan
Get access

Abstract

An AlGaAs/InGaAs HEMT grown on Si substrate with Ge/GexSi1−x buffer is demonstrated. The Ge/GexSi1−x metamorphic buffer layer used in this structure was only 1.0 μgm thick. The electron mobility in the In0.18Ga0.82 As channel of the HEMT sample was 3,550 cm2/Vs. After fabrication, the HEMT device demonstrated a saturation current of 150 mA/mm and a maximum transconductance of 155 mS/mm. The well behaved characteristics of the HEMT device on the Si substrate are believed to be due to the very thin buffer layer achieved and the lack of the antiphase boundaries (APBs) formation and Ge diffusion into the GaAs layers.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Chau, Robert, Datta, Suman, Doczy, Mark, Doyle, Brian, Jin, Ben, Kavalieros, Jack, Majumdar, Amlan, Metz, Matthew, and Radosavljevic, Marko, IEEE transactions on nanotechnology 4, 153 (2005).Google Scholar
2. Hsieh, Y.C. Chang, E.Y., Luo, G.L., Pilkuhn, M. H. Yang, J.Y. Chung, H.W. and Chang, C. Y. Applied Physics Lett. 90, 083507 (2007).Google Scholar
3. Zanden, K. van der, Schreurs, D, Member, IEEE, Mijlemans, P. and Borghs, G. IEEE Electron Device Lett. 21, 57 (2000).Google Scholar
4. Lazzarni, L. Nasi, L, Salviati, G. Fregonara, C.Z. Li, Y. Giling, L.J. Holt, D.B. Micron 31, 217 (2000).Google Scholar
5. Yang, Tsung-Hsi, Luo, Guangli, Chang, Edward Yi, Hsien, Y. C. and Chang, Chun-Yen, October, J. Vac. Sci.&Techn. B. 22, L17 (2004).Google Scholar
6. Hsieh, Y. C. Chang, E. Y. Luo, G. L. Chen, S. H. Biswas, Dhrubes, Wang, S. Y. and Chang, C. Y. J. Appl. Phys. 100, 064502 (2006).Google Scholar
7. Luo, Guangli, Yang, Tsung-His, Chang, Edward Yi, Chang, Chun-Yen and Chao, Koung-An, Jpn. J. Appl. Phys. 42, L517 (2003).Google Scholar
8. Li, Yuan, Salviati, G. Bongers, M.M.G. Lazzarini, L. Nasi, L. Giling, L. J. J. Crystal Growth 163, 195 (1996).Google Scholar
9. Li, W. Laaksonen, S. Haapamaa, J. Pessa, M. J. Crystal Growth 227, 104 (2001).Google Scholar
10. Yang, V. K. Groenert, M. Leitz, C. W. Pitera, A. J. Currie, M. T. and Fitzgerald, E. A. J. Appl. Phys. 93, 3859 (2003).Google Scholar