Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T03:22:29.433Z Has data issue: false hasContentIssue false

Amphiphilic Dye for Solid-State Dye-Sensitized Solar Cells

Published online by Cambridge University Press:  01 February 2011

Lukas Schmidt-Mende
Affiliation:
Institut des Sciences et Ingénierie Chimiques (ISIC), Laboratoire de Photonique et Interfaces (LPI), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
Shaik M. Zakeeruddin
Affiliation:
Institut des Sciences et Ingénierie Chimiques (ISIC), Laboratoire de Photonique et Interfaces (LPI), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
Michael Grätzel
Affiliation:
Institut des Sciences et Ingénierie Chimiques (ISIC), Laboratoire de Photonique et Interfaces (LPI), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
Get access

Abstract

We report a solid-state dye-sensitized solar cell with a record efficiency of 4% under simulated sunlight (AM1.5global, 100mW/cm2). This was made possible by using a new amphiphilic dye with hydrophobic spacers in combination with spiro-OMeTAD. We attribute the significant improvement in the device performance to the self-assembly of the dye to form a compact layer on the TiO2 surface and to the hydrophobic chains working as blocking layer between spiro-OMeTAD and TiO2 to reduce the back electron transfer. In addition, we studied the influence of nanoporous TiO2 film thickness on the performance of the device. These results demonstrate the high potential for solid state dye sensitized solar cells to compete with amorphous silicon cells as low cost alternative.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] O'Regan, B., Grätzel, M., Nature 1991, 353, 737.Google Scholar
[2] Tennakone, K., Bandaranayake, P. K. M., Jayaweera, P. V. V., Konno, A., Kumara, G. R. A., Physica E 2002, 14, 190.Google Scholar
[3] Tennakone, K., Kumara, G. R. R. A., Kottegoda, I. R. M., Perera, V. P. S., Chemical Communications 1999, 1, 15.Google Scholar
[4] Wang, Z. S., Huang, C. H., Huang, Y. Y., Hou, Y. J., Xie, P. H., Zhang, B. W., Cheng, H. M., Chem Mater 2001, 13, 678.Google Scholar
[5] Grätzel, M., J. Photochem. and Photobio. C: Photochem Rev 2003, 4, 145.Google Scholar
[6] Schmidt-Mende, L., Zakeeruddin, S. M., Grätzel, M., Applied Physics Letters 2005, 86, 13504.Google Scholar
[7] Wang, P., Zakeeruddin, S. M., Exnar, I., Grätzel, M., ChemComm 2002, 24, 2972.Google Scholar
[8] Wang, P., Zakeeruddin, S. M., Humphry-Baker, R., Moser, J. E., Grätzel, M., Adv. Mater. 2003, 15, 2101.Google Scholar
[9] Wang, P., Zakeeruddin, S. M., Moser, J. E., Nazeeruddin, M. K., Sekiguchi, T., Grätzel, M., Nature Materials 2003, 2, 402.Google Scholar
[10] Krüger, J., Plass, R., Cevey, L., Piccirelli, M., Grätzel, M., Bach, U., Appl. Phys. Lett. 2001, 79, 2085.Google Scholar
[11] Krüger, J., Plass, R., Grätzel, M., Matthieu, H. J., Appl. Phys. Lett. 2002, 81, 367.Google Scholar