No CrossRef data available.
Article contents
Amorphous/Crystalline Silicon Two Terminal Visibleænfrared Tunable Photodetector: Modeling and Realization
Published online by Cambridge University Press: 15 February 2011
Abstract
Difference in the absorption coefficient profile of the amorphous and crystalline silicon is the key idea for the realization of a new visible/infrared tunable photodetector (VIP). The device consists on a n-doped a-Si:H/intrinsic a-Si:H/p-doped a-SiC:H multilayer grown by PECVD on a p-type crystalline silicon wafer doped by a phosphourus diffusion. A grid-shaped aluminum front contact with transparent conductive oxide coating is used as window for the incident light. Tunable sensitivity in the visible and near infrared spectral range can be achieved under different values of the external voltage, with excellent spectral separation between the two quantum efficiencies peaks at 480 nm and 800 nm.
A simple analytical model taking into account the absorption profile, diffusion and drift lengths, and layer thicknesses reproduces fairly well the experimental results.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997