Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T15:37:45.107Z Has data issue: false hasContentIssue false

Amorphous Silicon Thin Film Transistors With High Electron Field Effect Mobility

Published online by Cambridge University Press:  21 February 2011

J.L. Andújar
Affiliation:
Departament Fisica Aplicada i Electrónica, Universitat de Barcelona, Av. Diagonal 647, E08028-Barcelona, SPAIN.
E. Bertrán
Affiliation:
Departament Fisica Aplicada i Electrónica, Universitat de Barcelona, Av. Diagonal 647, E08028-Barcelona, SPAIN.
A. Canillas
Affiliation:
Departament Fisica Aplicada i Electrónica, Universitat de Barcelona, Av. Diagonal 647, E08028-Barcelona, SPAIN.
J. Campmany
Affiliation:
Departament Fisica Aplicada i Electrónica, Universitat de Barcelona, Av. Diagonal 647, E08028-Barcelona, SPAIN.
J. Cifre
Affiliation:
Departament Fisica Aplicada i Electrónica, Universitat de Barcelona, Av. Diagonal 647, E08028-Barcelona, SPAIN.
Get access

Abstract

Normal staggered hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFT) were prepared by rf plasma deposition through a three-step process. The TFTs were constituted by an a-SiN/a-Si:H structure grown on NiCr source-drain electrodes evaporated on glass substrates. The intrinsic a-Si:H active layer (Fermi level at EC-EF = 0.7 eV) was deposited from pure SiH4 rf plasma, and the insulator layer of a-SiN was grown using a high rf power plasma (200 mW/cm2) of SiH4-N2 mixture with a SiH4 fraction of 0.5 %. Ellipsometric measurements showed that a very transparent a-SiN film was grown with an abrupt interface insulator/a-Si:H. TFTs with 0.2 μm thick a-Si:H layer and 10 μm channel length have on-off current ratios of 5 104, electron field effect mobility of 1.5 cm2/V-s (dielectric constant εri ≈ 7.9), and threshold voltage around 5 V. The results are discussed in terms of low hydrogen content and low porosity of these a-SiN films prepared from silane-nitrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Suzuki, K., in Amorphous & Microcrvstalline Semiconductors Devices, edited by Kanicki, J. (Artech House, Boston, 1991),p.77.Google Scholar
2. Brunst, G., Harms, H., Ashworth, J., Rosan, K.H. and Kempter, K., J. Non-cryst Solids 97&98, 1343 (1987).CrossRefGoogle Scholar
3. Takeda, T. and Sano, S., in Amorphous Silicon Technology, edited by Madan, A., Thompson, M.J., Taylor, P.C., LeComber, P.G. and Hamakawa, Y., (Mat. Res. Soc. Proc. 118, Pittsburgh, PA 1988), p.399.Google Scholar
4. Gotoh, M., Oda, S., Shimizu, I., Seki, A., Tamiya, E. and Karube, I., Sensors and Actuators 16, 55 (1989).Google Scholar
5. Andüjar, J.L., Bertran, E., Canillas, A., Esteve, J., Andreu, J. and Morenza, J.L., Vacuum 39, 795 (1989).Google Scholar
6. Bertran, E., López-Villegas, J.M., Andüjar, J.L., Campmany, J. and Morante, J.R., J. Non-cryst. Solids 137&138, 895 (1991).Google Scholar
7. Canillas, A., Bertran, E., Andújar, J.L. and Morenza, J.L., Vacuum 39, 785 (1989).Google Scholar
8. Aspnes, D.E., Thin Solid Films 89, 249 (1982).CrossRefGoogle Scholar
9. Ordejón, P. and Ynduráin, F., J. Non-cryst. Solids 137&138, 891 (1991).CrossRefGoogle Scholar
10. Sze, S.M., Semiconductor Devices, (Wiley, New York, 1985), p.206.Google Scholar
11. Campmany, J., Bertran, E., Andüjar, J.L., Canillas, A., López-Villegas, J.M. and Morante, J.R., presented at the 1992 MRS Spring Meeting, San Francisco, CA. Google Scholar
12. Hiranaka, K., Yoshimura, T. and Yamaguchi, T., Jap. J. Apl. Phys. 28, 2197 (1989).Google Scholar