Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T09:32:28.708Z Has data issue: false hasContentIssue false

Alternate Titanium Source Compounds for CVD of Ti/TiC Coatings

Published online by Cambridge University Press:  22 February 2011

Thomas J. Groshens
Affiliation:
Research Department, Naval Air Warfare Center, Weapons Division, China Lake, CA 93555
Charlotte K. Lowe-Ma
Affiliation:
Research Department, Naval Air Warfare Center, Weapons Division, China Lake, CA 93555
Richard C. Scheri
Affiliation:
Research Department, Naval Air Warfare Center, Weapons Division, China Lake, CA 93555
Robert Z. Dalbey
Affiliation:
Research Department, Naval Air Warfare Center, Weapons Division, China Lake, CA 93555
Get access

Abstract

CVD experiments were conducted using (Me3SiCH2)4Ti, Bis(2,4-dimethylpentadienyl) titanium, Cl3TiMe, (Me3SiCH2TiCl3 to evaluate their potential as Ti precursor compounds. Only Me3SiCH2TiCl3 was suitable for atmospheric CVD applications. Uniform thin films of polycrystalline TiC were deposited using Me3SiCH2TiCl3 in an argon ambient between 700 °C and 800 °C. A mechanism involving initial loss of Me3SiCl to generate a titanium carbene intermediate is proposed. Thin films of TiC deposited on Si[111] were characterized using XRD and AES. Depth profile line shape analysis showed only TiC and elemental Si in the interfacial region. XRD indicates some titanium silicide is formed at 800 °C. In a hydrogen ambient, hydrogenolysis of the alkyl group occurs and very poor film growth results were obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, N., Thin Solid Films, 214, 4 (1992).Google Scholar
2. Schmickler, W. and Schultze, J. W., Ber. Bunsengcs. Phys. Chem., 96, 760 (1992).Google Scholar
3. Tan, B. J., Hwan, L., and Suib, S. L., Chem. Mater., 3, 368 (1991).Google Scholar
4. Tachibana, T., Willams, B. E., and Glass, J. T., Phys. Rev. B, 45, 968 (1992).Google Scholar
5. a.) Bertoncello, R., Casagrande, A., Casarin, M., Glisenti, A., Lanzoni, E., Mirenght, L. and Tondello, E., Surf. Interface Anal., 18, 525 (1992);Google Scholar
b.) Bhal, D. G., Rcbenne, H. E. and Strandberg, C., J. Mater. Sci., 26, 4567 (1991).Google Scholar
6. a.) Hopfe, V., Tehel, A., Baier, A. and Scharsig, J., Applied Surface Sci., 54, 78 (1992);Google Scholar
b.) Nickl, J. J. and Reichlc, M., J. Less-Comon Metals, 24, 63. (1971).Google Scholar
7. Girolami, G. S., Jensen, J. A. and Pollina, D. M., J. Am. Chem. Soc., 109, 1579 (1987).Google Scholar
8. Wailes, P. C., Coults, R. S. P., and Weigold, H., Orpanomctallie Chemistry of Titanium. Zirconium, and Hafnium, (Academic Press, New York, 1974), p. 28.Google Scholar
9. Collier, M. R., Lappert, M. F., and Pearcc, R., J. C. S. Dalton Trans., 445, (1973).Google Scholar
10. Liu, J. and Emst, R. D., J. Am. Chem. Soc., 104, 3737 (1982).Google Scholar
11. McCowan, J. D. and Hantan, J. F., Can. J. Chem., 50, 755 (1972).Google Scholar
12. Sonnek, G., Baumgarten, K. G., Reinhcckel, H., Schroder, S., and Thiele, K. H., Z. anorg. allg. Chem. 426, 32 (1976).Google Scholar
13. Lee, K. E., Lowe-Ma, C. K. and Higa, K.T., Chemical Perspectives of Microelectronic Materials III (Mater, Res. Soc. Proc., Boston, MA, 1992) E 5.2.Google Scholar
14. Lappert, M. F., Patil, D. S. and Pedley, J. B., J. C. S. Chem. Comm., 830 (1975).Google Scholar
15. Bouteville, A., Remy, J.C. and Attuyt, C., J. Electrochem. Soc., 139, 2260 (1992).Google Scholar
16. Wang, W. H. and Chen, L. J., J. Appl. Phys. 71, 5918 (1972).Google Scholar
17. Lurie, P. G. and Wilson, J. M., Surf. Sci., 65, 476 (1977).Google Scholar
18. Madden, H. H., J. Vac. Sci. Tcchnol., 18, 677 (1981).Google Scholar
19. Powder diffraction file # 32–1383 International Center for Diffraction Data, Swarthmore, PA, Sets # 1–38 Copyright 1988.Google Scholar
20. a.) Eisch, J. J., Caldwell, K. R., Wemer, S., and Krüger, C., Organomelallics, 10, 3417 (1991).Google Scholar
b.) Francl, M. M., Pietro, W. J., Houl, R. F. Jr, Hehre, W. J., Organometallics, 2, 815 (1983).Google Scholar