Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T21:56:53.642Z Has data issue: false hasContentIssue false

Alpha-Decay Radiation Damage Study of a Glass-Bonded Sodalite Ceramicwaste form

Published online by Cambridge University Press:  21 March 2011

S.M. Frank
Affiliation:
Argonne National Laboratory-West, PO Box 2528, Idaho Falls, ID, 83403-2528
T. L. Barber
Affiliation:
Argonne National Laboratory-West, PO Box 2528, Idaho Falls, ID, 83403-2528
T. DiSanto
Affiliation:
Argonne National Laboratory-West, PO Box 2528, Idaho Falls, ID, 83403-2528
K. M. Goff
Affiliation:
Argonne National Laboratory-West, PO Box 2528, Idaho Falls, ID, 83403-2528
S. G. Johnson
Affiliation:
Argonne National Laboratory-West, PO Box 2528, Idaho Falls, ID, 83403-2528
J-F Jue
Affiliation:
Argonne National Laboratory-West, PO Box 2528, Idaho Falls, ID, 83403-2528
M. Noy
Affiliation:
Argonne National Laboratory-West, PO Box 2528, Idaho Falls, ID, 83403-2528
T. P. O'Holleran
Affiliation:
Argonne National Laboratory-West, PO Box 2528, Idaho Falls, ID, 83403-2528
W. Sinkler
Affiliation:
Current Address: UOP, Des Plaines, IL 60017 Argonne National Laboratory-West, PO Box 2528, Idaho Falls, ID, 83403-2528
Get access

Abstract

Effects of alpha decay on the ceramic waste form used to immobilize fission products and actinides accumulated from electrometallurgical treatment of Department of Energy metallic spent nuclear fuel is being studied. This involved the preparation of a surrogate ceramic waste form containing two-weight percent plutonium-238 and monitoring changes to the waste form resulting from alpha-decay damage. The phase assembly of the ceramic waste form consists of glass-bonded sodalite with small quantities of nepheline, halite and plutonium dioxide. The waste form has been monitored for three years and has acquired an internal alpha-decay dose of 1 × 1018 disintegrations per gram of material. Methods used to monitor the material include: density determination, chemical durability measured by immersion testing, microscopy and powder xray diffraction. The investigation has, to date, found little alteration to the waste form due to alpha-decay damage. X-ray diffraction analysis has detected a unit cell volume increase of 0.7 percent of the plutonium dioxide phase. Furthermore, bubbles and/or voids have been observed by transmission electron microscopy in the sodalite and glass phase. The origin of these defects is unclear and under investigation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Goff, K.M., Benedict, R.W., Johnson, S.G., Mariani, R.D., Simpson, M.F., Westphal, B.R., ANS Proceedings “Topical Meeting DOE Spent Nuclear Fuel and Fissile Materials Management”, San Diego, CA, 58 (2000).Google Scholar
2 Johnson, S.G., Goff, K.M., Ebert, W.L., McDeavitt, S., WM01 Proceedings “HLW, LLW, Mixed, Hazardous Wastes and Environmental Restoration,” Tucson, AZ, (2001).Google Scholar
3 Ewing, R.C., Weber, W.J., Clinard, F.W. Jr, Prog. Nucl. Energy 29 (2), 63 (1995).Google Scholar
4 Frank, S.M., Johnson, S.G., Moschetti, T.L., O'Holleran, T.P., Sinkler, W., Goff, K.M. and Esh, D.W., Mat. Res. Soc. Symp. Proc., 608, 469474 (2000).Google Scholar
5 Frank, S.M., Esh, D.W. Johnson, S.G., Noy, M.H. and O'Holleran, T.P., Mat. Res. Soc. Symp. Proc., 556, 11931198 (1999).Google Scholar
6 Yokota, Y., Hashimoto, H., and Yamaguchi, T., Ultramicroscopy, 54, 207214 (1994).Google Scholar
7 Storey, B.G., Allen, T.R., Mat. Res. Soc. Symp. Proc., 481, 413418 (1998).Google Scholar
8 Wang, S.X., Wang, L.M., and Ewing, R.C., J. Nucl. Mater., 278, 233241 (2000).Google Scholar
9 Howitt, D.G., Chan, H.W., DeNatale, J.F., and Heuer, J.P., J. Am. Ceram. Soc., 74, 1145–11 7 (1991).Google Scholar
10 Johnson, E., Ferrer, J., and Chadderton, L.T., Phys. Stat. Sol., (a)49, 585591 (1996).Google Scholar
11 Inagaki, Y., Furuya, H., and Idemitsu, K., Mat. Res. Soc. Proc., 257, 199206 (1992).Google Scholar
12 Sato, S., Furuya, H., Kozaka, T., Inagaki, Y., and Tamai, T., J. Nucl. Mat., 152, 265269 (1989).Google Scholar
13 El-Genk, M.S., and Tournier, J-M., J. Nucl. Mat., 280, 117, (2000).Google Scholar
14ASTM C1285–97, ASTM Philadelphia, PA, (1998).Google Scholar
15 Ebert, W.L.et al., Ceramic Waste form Handbook, Argonne National Laboratory, ANL-NT-119 (1999).Google Scholar
16 Hobbs, L.W., Clinard, F.W. Jr, Zinkle, S.J., Ewing, R.C., J. Nucl. Mat., 216, 291321 (1994).Google Scholar
17 Larson, A. C. and Dreele, R. B. Von, GSAS, General Structure Analysis System, Los Alamos National Laboratory Report LAUR86–748 (1986).Google Scholar
18 Siroquant, version 2, Sietronics LTD., Belconnen, Australia.Google Scholar
19 Turcotte, R.P., Chikalla, T.D., Rad. Eff. 19, 99108 (1973).Google Scholar
20 Sinkler, W., ANL-W, personal communication (2000).Google Scholar
21 Weber, W.J., J. Nucl. Mat., 98, 206215 (1981).Google Scholar
22 Weber, W.J., J. Mater. Res., 5, 26872697 (1990).Google Scholar
23 Boult, K.A., Dalton, J.T., Evans, J.P., Hall, A.R., Inns, A.J.. J.Marples, A.C., Paige, E.L., The preparation of fully active synroc and its radiation stability-Final Report, Oct. 1988. AERER-13318 (Harwell Laboratory, Harwell, UK, 1988).Google Scholar
24 Chikalla, T.D., Turcotte, R.P., Rad. Eff. 19, 9398 (1973).Google Scholar