Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T17:55:45.997Z Has data issue: false hasContentIssue false

All-Optical Switches and All-Optical Bistability by Nonlinear Optical Materials

Published online by Cambridge University Press:  25 February 2011

K. Sasaki
Affiliation:
Keio University, Faculty of Science and Technology, 3–14–1, Hiyoshi, Yokohama, 223, Japan
S. Sasaki
Affiliation:
Keio University, Faculty of Science and Technology, 3–14–1, Hiyoshi, Yokohama, 223, Japan
O. Furukawa
Affiliation:
Keio University, Faculty of Science and Technology, 3–14–1, Hiyoshi, Yokohama, 223, Japan
Get access

Abstract

All-optical switches and all-optical bistabili ties are realized by waveguide structures with vacuum evaporated polydiacetylene(PDA) films. The basic structure of the all-optical switches are prepared in the form of layered waveguide directional coupler with vacuum evaporated PDA top layer. Clearly switchings are observed at 1064nm of pulsed Nd:YAG laser. Furthermore ultra-high speed switching with Ti;Safire 135fs laser are recognized.

Operations of all-optical bistabilities are carried out by nonlinear coupling at grating structures in waveguides with PDA top layers. Hysterisis curves of bistability are affected by coupling parameters of gratings and parameters of waveguides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ducuing, H., In “Nonlinear Spectroscopy”, (Bloembergen, N. ed.) pp 276 (1977) North Holland Publishing Co. Google Scholar
[2] Kajzar, F. and Messier, J., Thin Solid Films, 132 11 (1986).Google Scholar
[3] Carter, G. M., Chen, Y. J., Rubner, M. F., Sandman, D. J., Thakur, M. K., and Tripathy, S. K., In “Nonlinear Optical Materials of Organic Molecules and Crystals” Vol.11. pp 115. Academic Press, Inc. (1987).Google Scholar
[4] Carter, G. M., Chen, Y. J., Rubner, M. F., Sandman, D. J., Thakur, M. K., and Tripathy, S. K., In “Nonlinear Optical Materials of Organic Molecules and Crystals” Vol.11. pp 104, Academic Press, Inc. (1987).Google Scholar
[5] Kajzar, F., and Messier, J. (Bloor, D. and Chance, R.R. eds.) NATO ASI Ser. No. 102, 325 (1985).Google Scholar
[6] Sasaki, K., Fujii, K., Tomioka, T., and Kinoshita, T., J. Opt. Soc. Am. 5 457 (1988).Google Scholar
[7] Sasaki, K., (Marder, S. R., Sohn, J. E., and Stucky, G. D. eds.) ACS Symp. Ser. 445, 316 (1991).Google Scholar
[8] Jensen, S. M., IEEE J.Quantum Electron., QE-18 1580 (1982).Google Scholar
[9] FRieberg, S. R. Silberberg, Y., Andrejco, M. J., Saifi, M. A., and Smith, P.W., Appl. Phys. Lett., 51 1135 (1987).Google Scholar
[10] Trillo, S., and Wabnitz, S., Appl. Phys. Lett., 56 993 (1986).Google Scholar
[11] Stegeman, G. I., Seaton, C. T., Ironside, C. N., and Walker, A. C., Appl. Phys. Lett., 50 1035 (1987).Google Scholar
[12] Delong, K. W., Rochford, K. B., and Stegeman, G. I., Appl. Phys. Lett., 55 1823 (1989).Google Scholar